Pointer Analysis in the Presence
of Dynamic Class Loading

Martin Hirzel, Amer Diwan
University of Colorado at Boulder

Michael Hind
IBM T.J. Watson Research Center

Clients {

Pointer analysis motivation

new C();// G
b=newC();// H

What does it do?

Points-to sets
pointsTo(a) == {G,H}
__—Code browsing P oz.ntsTo(b) ==_{_H}
Tools \Code transformations poz.ntSTo(G.f) == {H}
/ Error detection pointsTo(H.f) == {H}

DeV|rtuaI|zat|on

What is it good for?

OIO'“m'Za\’['o"‘s—Load elimination
Parallelization

Connectivity-based garbage collection 5

Static flow- and context-insensitive
pointer analysis by Andersen

| Analysis components Analysis data structures

Call graph builder

Code /Constraint finder

Method compilation

Constraint propagator Points-to sets

——————————————————

Static analysis can not deal with
all of Java

» Class loading may be implicitly
triggered by any ...
— Constructor call
— Static field access
— Static method call

» Classes may come from the web or
be generated on the fly

=>» Pretending a “‘static world” fails for
most real-world applications

Java challenges

Analysis components Analysis data structures

1. Online call

|

1

|

|

! Call graph builder graph building
|

1

|

Method compilation 3. Unresolved

|
|

4. Reflection and | types
native code !

| 2. Re-propagation
| Constraint propagator

1. Online call graph building

caller a = x.m(b);

A::m(c) {
return J;

callee

}

1. Online call graph building

)
caller - X.Z(b);//);
callee A::m(c) {

return d;

}

1. Online call graph building

Y
caller a =x.m/(b); e =y-:%/);
callee A::m(c) { B::m(g) {
return d; return /;
]]

Architecture for
online call graph building

| Analysis components Analysis data structures

Call graph builder €= Caller/callee look-up

/Constraint finder
Method compilation

| Constraint propagator

Java challenges

/:/Constraint finder

Method compilation 3. Unresolved

4. Reflection and types

native code

| 2. Re-propagation
| Constraint propagator

2. Focused re-propagation

Code
a=new C();// G
b=newC();// H
a.f = b;

a =b;

Points-to sets
pointsTo(a) == {G}
pointsTo(b) == {H}
pointsTo(G.f) == {H}
pointsTo(Hf)=={ }

11

2. Focused re-propagation

Code
a=new C();// G
b=newC();// H
a.f = b;

a =b;

Points-to sets
pointsTo(a) == {G,H }
pointsTo(b) == {H}
pointsTo(G.f) == {H}
pointsTo(Hf)=={ }

12

2. Focused re-propagation

Code
a=new C();// G
b=newC();// H
a.f = b;

a =b;

Points-to sets
pointsTo(a) == {G,H }
pointsTo(b) == {H}
pointsTo(G.f) == {H}
pointsTo(H.f) == {H}

13

Architecture for
focused re-propagation

| Analysis components Analysis data structures

|
|
! Call graph builder «<— Caller/callee look-up
|
|
|

/Constraint finder

Method compilation

|
|
|
|
|
: Propagator worklist
|

| Constraint propagator

Java challenges

Method compilation 3. Unresolved

|
|
4. Reflection and | types
|
|
|

native code .
Propagator worklist

3. Unresolved types

Xx=...;
caller a=x.m(b);
7 (,') ‘7 Can X have a subclass
v] o thatinherits m from Y?
/ /
/ oo
callee ! Y""I(C) {d- ' Cannot tell before X is
o TEHIRE 0 resolved!

16

Architecture for

managing unresolved types

Virtual machine events

Method compilation

Type resolution

| Analysis components Analysis data structures

Call graph builder «<— Caller/callee look-up

/Deferred constraints

\ Propagator worklist

|
|
|
|
|
|
|
/:/Constralnt finder
|
|
|
|

Resolutlon manager

| Constraint propagator

Java challenges

Virtual machine events

Method compilation

4. Reflection and
native code

Type resolution

/:/Constraint finder

l /vDeferred constraints

Resolution manager
N Propagator worklist

| Constraint propagator
|

4. Reflection and native code

Reflection

Field f = B.class.getField(*...”);

Bb=...;
f.set(b,v);
Native code

Java-side code Native-side code
a4 = b.m(c)ﬁ; —> (00100101
01001110
10010011
Object VM_JNIFunctions. 01001001
CallObjectMethod(method, args) { 10001111
return method.invoke(args); 5 10001111

] _ 00100101

19

Architecture for dealing with
reflection and native code

Virtual machine events : Analysis components Analysis data structures

|
|
! Call graph builder «<— Caller/callee look-up
|
|

Constraint finder

l /vDeferred constraints

Resolution manager
|
! N Propagator worklist

iz

Method compilation”™ 1

Reflection execution

Native code execution

| Constraint propagator
Type resolution” !

Other events leading to constraints

Virtual machine events Analysis components Analysis data structures !

Building and start-up: ! Call graph builder «<— Caller/callee look-up

Bytecode attributes~
/:/Constraint finder
|

l /vDeferred constraints

Resolution manager
N Propagator worklist

Method compilation

Reflection execution
|

Native code execution

| Constraint propagator
Type resolution” !

Clients using our pointer analysis

Virtual machine events

Building and start-up\CaII graph builder <— Caller/callee look-up

Bytecode attributes~~
/:/yConstraint finder

Method compilation” 1 l /vDeferred constraints

Reflection execution” / Resolution manager

! \ Propagator worklist
Native code execution
| Constraint propagator
Type resolution” !

Dealing with invalidated results

Many techniques from prior work
— Guard optimized code (extant analysis)
— Pre-existence based inlining
— On-stack replacement
—and more

Connectivity-based garbage collection
— Trigger propagator only before collection
— Merge partitions if necessary

23

Evaluation methodology

Java virtual machine
— Jikes RVM from IBM, is itself written in Java

Benchmarks
— SPECjvm98 suite, xalan, hsql

Results not comparable to static analysis

— Analyze more code:
Jikes RVM adds a lot of Java code

— Analyze less code:
Not all application classes get loaded

24

Propagation cost

Eager At GC At End

Count Avg. Total | Count Avg. Total Total

hsql 391 10.1s 1h06m 6 1mi17s 7m40s| 7mO07/s
jess 734 16.8s 3h26m 3 1m58s 5mb53s| 3mO02s
javac| 1,103 12.5s 3h50m 5 1mb54s 9m32s| 6m27s
xalan 1,726 11.2s 5h22m 1 2m01s 2mO01s| 7m45s

=>» Eagerness trades off average cost

against total cost

= On average, focused re-propagation
is much cheaper than full propagation
=>» Total cost is a function of code size

and propagator eagerness

25

How long does a program have to
run to amortize the analysis cost?

Eager At GC At End
Count Avg. Total | Count Avg. Total Total
hsql 391 10.1s 1h06m 6 1mi17s 7m40s| 7mO07/s
jess 734 16.8s 3h26m 3 1m58s 5mb53s| 3mO02s
javac| 1,103 12.5s 3h50m 5 1mb54s 9m32s| 6m27s
xalan 1,726 11.2s 5h22m 1 2m01s 2mO01s| 7m45s
. Overall analysis overhead =» Long-running
Application Al .-
untime —~ applications
10% 5% 25% can amortize
[5m| 50m 1h4om 3h2om Not-too-eager
Analysis cost | _ 15m | 2h30m 5h 1on analysis cost
to amortize 1h 10h 20h 1d16h
. 5h| 1d16h 4d04h 8d08h 20

Validation

Virtual machine events

Building and start-up

Bytecode attributes
/Constralnt finder

Method compilation

/vDeferred constraints

Reflection execution esolutlon manager\
Propagator worklist

Native code execution

Constraint propagator
Type resolution |

Validation 27

Validation

* Piggy-back validation on garbage
collection

» For each pointer, check consistency with
analysis results

* Incorrect analysis would lead to tricky
bugs in clients

28

Related work

Andersen’s analysis for “static Java”
'RountevMilanovaRyder’'01]
LiangPenningsHarrold’01]
'WhaleyLam'02]
LhotakHendren'03]
Weaker analyses with dynamic class loading
DOIT — [PechtchanskiSarkar'01]
XTA — [QianHendren’04]
Ruf’s escape analysis — [BogdaSingh’01, King’03]
Demand-driven / incremental analysis

29

Conclusions

18t non-trivial pointer analysis for all of Java

ldentified and solved the challenges:
1. Online call graph building
2. Focused re-propagation
3. Managing unresolved types
4. Reflection and native code

Evaluated efficiency
Validated correctness

30

