
1

Pointer Analysis in the Presence
of Dynamic Class Loading

Martin Hirzel, Amer Diwan
University of Colorado at Boulder

Michael Hind
IBM T.J. Watson Research Center

2

Pointer analysis motivation
Code
a = new C(); // G
b = new C(); // H
a = b;
a.f = b;

Points-to sets
pointsTo(a) == {G,H}
pointsTo(b) == {H}
pointsTo(G.f) == {H}
pointsTo(H.f) == {H}

Code browsing
Code transformations
Error detection
Devirtualization
Load elimination
Parallelization

Clients

Tools

Optimizations

Connectivity-based garbage collection

What does it do?

What is it good for?

3

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Analysis components Analysis data structures

Static flow- and context-insensitive
pointer analysis by Andersen

Code

Points-to sets

4

Static analysis can not deal with
all of Java

• Class loading may be implicitly
triggered by any …
– Constructor call
– Static field access
– Static method call

• Classes may come from the web or
be generated on the fly

�Pretending a “static world” fails for
most real-world applications

5

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Analysis components Analysis data structures

Java challenges

4. Reflection and
native code

3. Unresolved
types

2. Re-propagation

1. Online call
graph building

6

1. Online call graph building

a = x.m(b);

A::m(c) {
return d;

}

caller

callee

7

1. Online call graph building

a = x.m(b);

A::m(c) {
return d;

}

e = y.m(f);caller

callee

8

1. Online call graph building

a = x.m(b);

A::m(c) {
return d;

}

B::m(g) {
return h;

}

e = y.m(f);caller

callee

9

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Analysis components Analysis data structures

Caller/callee look-up

Architecture for
online call graph building

10

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Analysis components Analysis data structures

Caller/callee look-up

Java challenges

4. Reflection and
native code

3. Unresolved
types

2. Re-propagation

11

2. Focused re-propagation

Code
a = new C(); // G
b = new C(); // H
a.f = b;

a = b;

Points-to sets
pointsTo(a) == {G}
pointsTo(b) == {H}
pointsTo(G.f) == {H}
pointsTo(H.f) == { }

12

2. Focused re-propagation

Code
a = new C(); // G
b = new C(); // H
a.f = b;

a = b;

Points-to sets
pointsTo(a) == {G,H}
pointsTo(b) == {H}
pointsTo(G.f) == {H}
pointsTo(H.f) == { }

13

2. Focused re-propagation

Code
a = new C(); // G
b = new C(); // H
a.f = b;

a = b;

Points-to sets
pointsTo(a) == {G,H}
pointsTo(b) == {H}
pointsTo(G.f) == {H}
pointsTo(H.f) == {H}

14

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Propagator worklist

Analysis components Analysis data structures

Caller/callee look-up

Architecture for
focused re-propagation

15

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Propagator worklist

Analysis components Analysis data structures

Caller/callee look-up

Java challenges

4. Reflection and
native code

3. Unresolved
types

16

3. Unresolved types

X x = …;
a = x.m(b);

Y::m(c) {
return d;

}

caller

callee

Can X have a subclass
that inherits m from Y??
Cannot tell before X is
resolved!!

17

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Propagator worklist
Resolution manager

Type resolution

Deferred constraints

Virtual machine events Analysis components Analysis data structures

Caller/callee look-up

Architecture for
managing unresolved types

18

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Propagator worklist
Resolution manager

Type resolution

Deferred constraints

Virtual machine events Analysis components Analysis data structures

Caller/callee look-up

Java challenges

4. Reflection and
native code

19

4. Reflection and native code

Field f = B.class.getField(“…”);
B b = …;
f.set(b,v);

00100101
01001110
10010011
01001001
10001111
10001111
00100101

Java-side code Native-side code

Object VM_JNIFunctions.
CallObjectMethod(method, args) {

return method.invoke(args);
}

Reflection

Native code

a = b.m(c);

20

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Propagator worklist
Resolution manager

Type resolution

Deferred constraints

Reflection execution

Native code execution

Architecture for dealing with
reflection and native code

Virtual machine events Analysis components Analysis data structures

Caller/callee look-up

21

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Propagator worklist
Resolution manager

Type resolution

Deferred constraints

Reflection execution

Native code execution

Other events leading to constraints

Bytecode attributes

Building and start-up

Virtual machine events Analysis components Analysis data structures

Caller/callee look-up

22

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph
Clients

Propagator worklist
Resolution manager

Type resolution

Deferred constraints

Reflection execution

Native code execution

Clients using our pointer analysis

Building and start-up

Virtual machine events Analysis components Analysis data structures

Caller/callee look-up

Bytecode attributes

23

Dealing with invalidated results

Many techniques from prior work
– Guard optimized code (extant analysis)
– Pre-existence based inlining
– On-stack replacement
– and more

Connectivity-based garbage collection
– Trigger propagator only before collection
– Merge partitions if necessary

24

Evaluation methodology
Java virtual machine

– Jikes RVM from IBM, is itself written in Java

Benchmarks
– SPECjvm98 suite, xalan, hsql

Results not comparable to static analysis
– Analyze more code:

Jikes RVM adds a lot of Java code
– Analyze less code:

Not all application classes get loaded

25

Propagation cost

7m45s2m01s2m01s15h22m11.2s1,726xalan

6m27s9m32s1m54s53h50m12.5s1,103javac

3m02s5m53s1m58s33h26m16.8s734jess

7m07s7m40s1m17s61h06m10.1s391hsql

TotalTotalAvg.CountTotalAvg.Count

At EndAt GCEager

� Eagerness trades off average cost
against total cost

� On average, focused re-propagation
is much cheaper than full propagation

� Total cost is a function of code size
and propagator eagerness

26

How long does a program have to
run to amortize the analysis cost?

8d08h4d04h1d16h5h

1d16h20h10h1h

10h5h2h30m15m

3h20m1h40m50m5m

2.5%5%10%

Analysis cost
to amortize

Overall analysis overhead

7m45s2m01s2m01s15h22m11.2s1,726xalan

6m27s9m32s1m54s53h50m12.5s1,103javac

3m02s5m53s1m58s33h26m16.8s734jess

7m07s7m40s1m17s61h06m10.1s391hsql

TotalTotalAvg.CountTotalAvg.Count

At EndAt GCEager

� Long-running
applications
can amortize
not-too-eager
analysis cost

Application
runtime

27

Method compilation
Constraint finder

Call graph builder

Constraint propagator

Constraint graph

Clients

Propagator worklist
Resolution manager

Type resolution

Deferred constraints

Reflection execution

Native code execution

Validation

Validation

Building and start-up

Virtual machine events Analysis components Analysis data structures

Caller/callee look-up

Bytecode attributes

28

Validation

• Piggy-back validation on garbage
collection

• For each pointer, check consistency with
analysis results

• Incorrect analysis would lead to tricky
bugs in clients

29

Related work

Andersen’s analysis for “static Java”
[RountevMilanovaRyder’01]
[LiangPenningsHarrold’01]
[WhaleyLam’02]
[LhotakHendren’03]

Weaker analyses with dynamic class loading
DOIT – [PechtchanskiSarkar’01]
XTA – [QianHendren’04]
Ruf’s escape analysis – [BogdaSingh’01, King’03]

Demand-driven / incremental analysis

30

Conclusions

• 1st non-trivial pointer analysis for all of Java
• Identified and solved the challenges:

1. Online call graph building
2. Focused re-propagation
3. Managing unresolved types
4. Reflection and native code

• Evaluated efficiency
• Validated correctness

