
Point er A nalysis in t he Presence of D ynamic
Class Loading�

Mart in Hirzel1, Amer Diwan1, and Michael Hind2

1 University of Colorado, Boulder, CO 80309, USA
{ hirzel,diwan } @cs.colorado.edu

2 IB M Watson Research Center, Hawthorne, NY 10532, USA
hind@watson.ibm.com

A bstr act . Many opt imizat ions need precise pointer analyses to be ef-
fect ive. Unfortunately, some Java features, such as dynamic class load-
ing, re”ect ion, and nat ive methods, make pointer analyses di� cult to
develop. Hence, prior pointer analyses for Java either ignore these fea-
tures or are overly conservat ive. This paper presents the “r st non-t rivial
pointer analysis that deals with all Java language features. This paper
ident i“es all problems in performing Andersen•s pointer analysis for the
full Java language, presents solut ions to those problems, and uses a full
implementat ion of the solut ions in Jikes RVM for validat ion and perfor-
mance evaluat ion. The results from this work should be t ransferable to
other analyses and to other languages.

1 I nt roduc t ion

Pointer analysis bene“ ts many opt imizations, such as inlining, load elimination,
code movement , stack allocation, and parallelization. Unfortunately, dynamic
class loading, re” ect ion, and native code make ahead-of-t ime pointer analysis of
Java programs impossible.

This paper presents the “ rst non-t rivial pointer analysis that works for all of
Java. Most prior papers assume that all classes are known and available ahead
of t ime (e.g., [39,40,47,60]). The few papers that deal with dynamic class loading
assume rest rict ions on re” ect ion and native code [7,36,44,45]. Prior work makes
these simplifying assumpt ions because they are acceptable in some contexts,
because dealing with the full generality of Java is di� cult , and because the
advantages of the analyses often outweigh the disadvantages of only handling a
subset of Java.

This paper describes how to overcome the rest rict ions of prior work in the
context of Andersen•s pointer analysis [3], so the bene“ ts become available in
the general sett ing of an execut ing Java virtual machine. This paper:
� This work is supported by NSF ITR grant CCR-0085792, an NSF Career Award

CCR-0133457, an IB M Ph.D. Fellowship, an IB M faculty partnership award, and an
equipment grant from Intel. Any opinions, “nd ings and conclusions or recommenda-
t ions expressed in this material are the authors• and do not necessarily re”ect those
of the sponsors.

M . Odersky (Ed .) : ECOO P 2004, L NCS 3086, pp . 96…122, 2004.
c� Spr inger-Ver lag Ber l in Heidelberg 2004

Pointer Analysis in the Presence of Dynamic Class Loading 97

(a) ident i“ es all problems of performing Andersen•s pointer analysis for the full
Java language,

(b) presents a solut ion for each of the problems,
(c) reports on a full implementat ion of the solut ions in Jikes RVM, an open-

source research virtual machine from IBM [2],
(d) validates, for our benchmark runs, that the list of problems is complete, the

solut ions are correct , and the implementat ion works, and
(e) evaluates the e� ciency of the implementat ion.

The performance results show that the implementat ion is e� cient enough for
stable long-running applications. However, becauseAndersen•s algorithm has cu-
bic t imecomplexity, and becauseJikesRVM, which is itself writt en in Java, leads
to a largecodebaseeven for small benchmarks, performanceneeds improvements
for short -running applications. Such improvements are an open challenge; they
could be achieved by making Andersen•s implementat ion in Jikes RVM more
e� cient , or by using a cheaper analysis.

The contribut ions from this work should be transferable to

…Other analyses: Andersen•s analysis is a whole-program analysis consist -
ing of two steps: modeling the code and comput ing a “ xed-point on the
model. Several other algorithms follow the same patt ern, such as VTA [54],
XTA [57], or Das•s one level ” ow algorithm [15]. Algorithms that do not
require the second step, such as CHA [16,20] or Steensgaard•s uni“ cation-
based algorithm [52], are easier to perform in an online sett ing. Andersen•s
analysis is ” ow-insensit ive and context -insensit ive. While this paper should
also be helpful for performing ” ow-sensit ive or context -sensit ive analyses
online, these pose addit ional challenges (mult ithreading and except ions, and
mult iple calling contexts) that need to be addressed.

…Other languages: This paper shows how to deal with dynamic class loading,
re” ect ion, and native code in Java. Other languages have similar features,
which pose similar problems for pointer analysis.

2 M ot ivat ion

Java features such as dynamic class loading, re” ect ion, and native methods pro-
hibit stat ic whole-program analyses. This paper ident i“ es all Java features that
create challenges for pointer analysis; this sect ion focuses just on class loading,
and discusses why it precludes stat ic analysis.

2.1 I t I s No t K nown Stat ical ly Whe r e a Class W il l B e Loaded fr om

Java allows user-de“ ned class loaders, which may have their own rules for where
to look for the bytecode, or even generate it on-the-” y. A stat ic analysis cannot
analyze those classes. User-de“ ned class loaders are widely used in product ion-
st rength commercial applications, such as Eclipse [56] and Tomcat [55].

98 M. Hirzel, A. Diwan, and M. Hind

2.2 I t I s No t K nown Stat ical ly Wh ich Class W il l B e Loaded

Even an analysis that rest ricts itself to the subset of Java without user-
de“ ned class loaders cannot be fully stat ic, because code may st ill load stat i-
cally unknown classes with the system class loader. This is done by invoking
Class.forName(String name), where name can be computed at runt ime. For ex-
ample, a program may compute the localized calendar class name by reading
an environment variable. One approach to dealing with this issue would be to
assume that all calendar classes may be loaded. This would result in a less pre-
cise solut ion, if, for example, at each customer•s site, only one calendar class is
loaded. Even worse, the relevant classes may be available only in the execut ion
environment , and not in the development environment . Only an online analysis
could analyze such a program.

2.3 I t I s No t K nown Stat ical ly When a Given Class W il l B e Loaded

If the classes to be analyzed are available only in the execut ion environment ,
but Class.forName is not used, one could imagine avoiding static analysis by
att empt ing a whole-program analysis during JVM start-up, long before the an-
alyzed classes will be needed. The Java speci“ cation says it should appear to
the user as if class loading is lazy, but a JVM could just pretend to be lazy
by showing only the e� ects of lazy loading, while actually being eager. This is
di� cult to engineer in pract ice, however. One would need a deferral mechanism
for various visible e� ects of class loading. An example for such a visible e� ect
would be a stat ic “ eld init ialization of the form

stat ic HashMap hashMap = new HashMap(Constants.CAPACITY) ;
Suppose that Constants.CAPACITY has the illegal value Š1. The e� ect ,

an Except ionInInit ializerError, should only become visible when the class con-
taining the stat ic “ eld is loaded. Furthermore, hashMap should be init ialized
after CAPACITY, to ensure that the latt er receives the correct value. Loading
classes eagerly and st ill preserving the proper (lazy) class loading semant ics is
challenging.

2.4 I t I s No t K nown Stat ical ly Whethe r a Given Class W il l Be
Loaded

Even if one ignores the order of class loading, and handles only a subset of Java
without explicit class loading, implicit class loading st ill posesproblems for stat ic
analyses. A JVM implicit ly loads a class the “ rst t ime execut ing code refers to it ,
for example, by creating an instance of the class. Whether a program will load a
given class is undecidable, as Figure 1 illust rates: a run of • jav a MainŽ does not
load class C; a run of • jav a Main anArgumentŽ loads class C, because Line 5
creates an instance of C. We can observe this by whether Line 10 in the stat ic
init ializer prints its message. In this example, a stat ic analysis would have to
conservatively assume that class C will be loaded, and to analyze it . In general,
a stat ic whole-program analysis would have to analyze many more classes than

Pointer Analysis in the Presence of Dynamic Class Loading 99

necessary, making it ine� cient (analyzing more classes costs t ime and space) and
less precise (t he code in those classes may exhibit behavior never encountered
at runt ime).

1: class Main {
2: publ ic st at ic void main (St ring[] argv) {
3: C v = nul l ;
4: i f (argv.length > 0)
5: v = new C();
6: }
7: }
8: class C {
9: st at ic {

10: System.out.print ln("loade d clas s C");
11: }
12: }

F ig. 1. Class loading example.

3 Relat ed Work

This paper shows how to enhance Andersen•s pointer analysis to analyze the
full Java programming language. Sect ion 3.1 puts Andersen•s pointer analysis in
context . Sect ion 3.2 discusses related work on online, interprocedural analyses.
Sect ion 3.3 discusses related work on using Andersen•s analysis for Java. Finally,
Sect ion 3.4 discusses work related to our validation methodology.

3.1 Stat ic Pointe r A nalyses

The body of literature on pointer analyses is vast [30]. At one extreme, exem-
pli“ ed by Steensgaard [52] and type-based analyses [18,25,57], the analyses are
fast , but imprecise. At the other ext reme, exempli“ ed by shape analyses [29,
49], the analyses are slow, but precise enough to discover the shapes of many
data st ructures. In between these two extremes there are many pointer analyses,
o� ering di� erent cost -precision t radeo� s.

The goal of our research was to choose a well-known analysis and to extend
it to handle all features of Java. This goal was motivated by our need to build
a pointer analysis to support connect ivity-based garbage collect ion, for which
type-based analyses are too imprecise [32]. Liang et al. [41] report that it would
bevery hard to signi“ cant ly improve theprecision of Andersen•sanalysiswithout
bit ing into the much more expensive shape analysis. This left us with a choice
between Steensgaard•s [52] and Andersen•s [3] analysis. Andersen•s analysis is
less e� cient , but more precise [31,50]. We decided to use Andersen•s analysis,
because it poses a superset of the Java-speci“ c challenges posed by Steensgaard•s
analysis, leaving the latt er (or points in between) as a fall-back opt ion.

100 M. Hirzel, A. Diwan, and M. Hind

3.2 On l ine I nte r pr ocedu r al A nalyses

An online interprocedural analysis is an interprocedural analysis that occurs
during execut ion, and thus, can correct ly deal with dynamic class loading.

3.2.1 Demand -dr iven inte r pr ocedu r al analyses. A number of pointer
analysesaredemand-driven, but not online [1,9,10,27,38,59]. All of theseanalyses
build a representat ion of the stat ic whole program, but then compute exact
solut ions only for parts of it , which makes them more scalable. None of these
papers discuss issues speci“ c to dynamic class loading.

3.2.2 Inc r ementa l inte r pr ocedu r al analyses. Another related area of re-
search is incremental interprocedural analysis [8,14,23,24]. The goal of this line
of research is to avoid a reanalysis of the complete program when a change is
made after an interprocedural analysis has been performed. This paper di� ers
in that it focuses on the dynamic semant ics of the Java programming language,
not programmer modi“ cations to the source code.

3.2.3 Exta nt analysis. Sreedhar, Burke, and Choi [51] describe extant anal-
ysis, which “ nds parts of the stat ic whole program that can be safely opt imized
ahead of t ime, even when new classes may be loaded later. It is not an online
analysis, but reduces the need for one in sett ings where much of the program is
available stat ically.

3.2.4 A nalyses tha t deal wit h dyna mic class loading.
Below, we discuss some analyses that deal with dynamic class loading. None
of these analyses deals with re” ect ion or JNI , or validate their analysis results.
Furthermore, all are less precise than Andersen•s analysis.

Pechtchanski and Sarkar [44] present a framework for interprocedural whole-
program analysis and opt imist ic opt imization. They discuss how the analysis is
t riggered (when newly loaded methods are compiled), and how to keep track of
what to de-opt imize (when opt imist ic assumpt ions are invalidated). They also
present an example online interprocedural type analysis. Their analysis does not
model value ” ow through parameters, which makes it less precise, as well as
easier to implement , than Andersen•s analysis.

Bogda and Singh [7] and King [36] adapt Ruf•s escape analysis [48] to deal
with dynamic class loading. Ruf•s analysis is uni“ cation-based, and thus less pre-
cise than Andersen•s analysis. Escape analysis is a simpler problem than pointer
analysis because the impact of a method is independent of its parameters and
the problem doesn•t require a unique representat ion for each heap object [11].
Bogda and Singh discuss t radeo� s of when to t rigger the analysis, and whether
to make opt imist ic or pessimist ic assumpt ions for opt imization. King focuses on
a speci“ c client , a garbage collector with thread-local heaps, where local col-
lect ions require no synchronization. Whereas Bogda and Singh use a call graph

Pointer Analysis in the Presence of Dynamic Class Loading 101

based on capturing call edges at their “ rst dynamic execut ion, King uses a call
graph based on rapid type analysis [6].

Qian and Hendren [45], in work concurrent ly with ours, adapt T ip and Pals-
berg•s XTA [57] to deal with dynamic class loading. The main contribut ion of
their paper is a low-overhead call edge pro“ ler, which yields a precise call graph
on which XTA is based. Even though XTA is weaker than Andersen•s analy-
sis, both have separate const raint generation and constraint propagation steps,
and thus pose similar problems. Qian and Hendren solve the problems posed
by dynamic class loading similarly to the way we solve them; for example, their
approach to unresolved references is analogous to our approach in Sect ion 4.5.

3.3 A nde r sen•s A nalysis for Stat ic Java

A number of papers describe how to use Andersen•s analysis for Java [39,40,47,
60]. None of these deal with dynamic class loading. Nevertheless, they do present
solut ions for various other features of Java that make pointer analyses di� cult
(object “ elds, virtual method invocations, etc.).

Rountev, Milanova, and Ryder [47] formalize Andersen•s analysis for Java us-
ing set const raints, which enables them to solve it with Bane (Berkeley ANalysis
Engine) [19]. Liang, Pennings, and Harrold [40] compare both Steensgaard•s and
Andersen•s analysis for Java, and evaluate t rade-o� s for handling “ elds and the
call graph. Whaley and Lam [60] improve the e� ciency of Andersen•s analysis
by using implementat ion techniques from CLA [28], and improve the precision
by adding ” ow-sensit ivity for local variables. Lhoták and Hendren [39] present
Spar k (Soot Pointer Analysis Research Kit) , an implementat ion of Andersen•s
analysis in Soot [58], which provides precision and e� ciency t radeo� s for various
components.

Prior work on implement ing Andersen•s analysis di� ers in how it repre-
sents const raint graphs. There are many alternatives, and each one has di� erent
cost/ bene“ t t radeo� s. We will discuss these in Sect ion 4.2.1.

3.4 Val idat ion M eth odology

Our validation methodology comparespoints-to setscomputed by our analysis to
actual pointers at runt ime. This is similar to limit studies that other researchers
have used to evaluate and debug various compiler analyses [18,37,41].

4 A lgor i t hm

Sect ion 4.1 presents the architecture for performing Andersen•s pointer analysis
online. The subsequent sect ions discuss parts of the architecture that deal with:
const raint “ nding (4.2), call graph building (4.3), const raint propagation (4.4),
type resolut ion (4.5), and other const raint generating events (4.6).

102 M. Hirzel, A. Diwan, and M. Hind

4.1 A r chitectu r e

As ment ioned in Sect ion 1, Andersen•s algorithm has two steps: “ nding the
const raints that model the code semant ics of interest , and propagating these
constraints unt il a “ xed point is reached. In an o� ine sett ing, the “ rst step
requires a scan of the program and its call graph. In an online sett ing, this
step is more complex, because parts of the program are • discoveredŽ during
execut ion of various VM events. Figure 2 shows the architecture for performing
Andersen•s pointer analysis online. The events during virtual machine execut ion
(left column) generate inputs to the analysis. The analysis (dott ed box) consists
of four components (middle column) that operate on shared data st ructures
(right column). Clients (bottom) t rigger the const raint propagator component of
the analysis, and consume the outputs. The outputs are represented as points-to
sets in theconst raint graph. In an onlinesett ing, thepoints-to setsconservatively
describe the pointers in the program unt il there is an addit ion to the const raints.

F ig. 2. Architecture for performing Andersen•s pointer analysis online. The numbers
in parentheses refer to sect ions in this paper.

When used o� ine, Andersen•sanalysis requiresonly a part of thearchitecture
in Figure 2. In an o� ine sett ing, the only input comes from method compilation.
It isused by theconst raint “ nder and thecall graph builder to createa const raint
graph. After that, the const raint propagator “ nds a “ xed-point on the const raint
graph. The results are consumed by clients.

Four addit ions to the architecture make Andersen•s analysis work online:

Bu i lding th e cal l gr aph onl ine. Andersen•s analysis relies on a call graph
for interprocedural const raints. This paper uses an online version of CHA
(class hierarchy analysis [16,20]) for the call graph builder. CHA is an o� ine
whole-program analysis, Sect ion 4.3 describes how to make it work online.

Pointer Analysis in the Presence of Dynamic Class Loading 103

Suppor t ing r e-pr opagat ion. Method compilation and other const raint -
generating events happen throughout the execut ion. Where an o� ine anal-
ysis can propagate once after all const raints have been found, the online
analysis has to propagate whenever a client needs points-to information and
new constraints have been created since the last propagation. Sect ion 4.4 de-
scribes how the propagator starts with its previous solut ion and a worklist of
changed parts in the const raint graph to avoid incurring the full propagation
cost every t ime.

Suppor t ing un r esolved t ypes. The constraint “ nder may “ nd constraints
that involve as-yet unresolved types. But both the call graph builder and the
propagator rely on resolved types for precision; for example, the propagator
“ lters points-to sets by types. Sect ion 4.5 describes how the resolut ion man-
ager defers communicating const raints from the constraint “ nder to other
analysis components unt il the involved types are resolved.

Captu r ing mor e inpu t event s. A pointer analysis for Java has to deal with
features such as re” ect ion and native code, in addit ion to dynamic class
loading. Sect ion 4.6 describes how to handle all the other events during
virtual machine execut ion that may generate const raints.

4.2 Const r aint F inde r

Sect ion 4.2.1 describes the const raint graph data st ructure, which models the
data ” ow of the program. Sect ion 4.2.2 describes how code is t ranslated into
const raints at method compilation t ime. Our approach to represent ing the con-
st raint graph and analyzing code combines ideas from various earlier papers on
o� ine implementat ion of Andersen•s analysis.

4.2.1 Const r aint gr aph . The constraint graph has four kinds of nodes that
part icipate in const raints. Theconstraintsarestored assetsat thenodes. Table1
describes the nodes, int roducing the notat ion that is used in the remainder of
this paper, and shows which sets are stored at each node. The node kinds in
• [· · ·]Ž are the kinds of nodes in the set .

Table 1. Const raint graph representat ion.

Node kind Represents concrete ent it ies Flow sets Points-to sets

h-node Set of heap objects, e.g., all objects allocated
at a part icular allocat ion site

none none

v-node Set of program variables, e.g., a stat ic variable,
or all occurrences of a local variable

” owTo[v],
” owTo[v.f]

pointsTo[h]

h.f -node Instance “e ld f of all heap objects represented
by h

none pointsTo[h]

v.f -node Instance “e ld f of all h-nodes pointed to by v ” owFrom[v],
” owTo[v]

none

104 M. Hirzel, A. Diwan, and M. Hind

Flow-to sets (Column 3 of Table 1) represent a ” ow of values (assignments,
parameter passing, etc.), and are stored with v-nodes and v.f -nodes. For exam-
ple, if v� .f � ” owTo(v), then v•s pointer r-value may ” ow to v� .f . Flow-from sets
are the inverseof ” ow-to sets. In theexample, wewould havev � ” owFrom(v� .f).

Points-to sets (Column 4 of Table 1) represent the set of objects (r-values)
that a pointer (l-value) may point to, and are stored with v-nodes and h.f -nodes.
Since it stores points-to sets with h.f -nodes instead of v.f -nodes, the analysis is
“ eld sensitive [39].

The constraint “ nder models program code by v-nodes, v.f -nodes, and their
” ow sets. Based on these, the propagator computes the points-to sets of v-nodes
and h.f -nodes. For example, if a client of the pointer analysis is interested in
whether a variable p may point to objects allocated at an allocation site a, it
checks whether the h-node for a is an element of the points-to set of the v-node
for p.

Each h-node has a map from “ elds f to h.f -nodes (i.e., the nodes that rep-
resent the instance “ elds of the objects represented by the h-node). In addit ion
to language-level “ elds, each h-node has a special node h.f t d that represents the
“ eld containing the reference to the type descriptor for the heap node. A type
descriptor is implemented as an object in Jikes RVM, and thus, must be mod-
eled by the analysis. For each h-node represent ing arrays of references, there is
a special node h.f elems that represents all of their elements. Thus, the analysis
does not dist inguish between di� erent elements of an array.

There are many alternatives for storing the ” ow and points-to sets. For ex-
ample, we represent the data ” ow between v-nodes and h.f -nodes implicit ly,
whereas Bane represents it explicit ly [22,47]. Thus, our analysis saves space
compared to Bane, but may have to perform more work at propagation t ime.
As another example, CLA [28] stores reverse points-to sets at h-nodes, instead of
storing forward points-to sets at v-nodes and h.f -nodes. The forward points-to
sets are implicit in CLA and must therefore be computed after propagation to
obtain the “ nal analysis results. These choices a� ect both the t ime and space
complexity of the propagator. As long as it can infer the needed sets during
propagation, an implementat ion can decide which sets to represent explicit ly.
In fact , a representat ion may even store some sets redundant ly: for example, to
obtain e� cient propagation, our representat ion uses redundant ” ow-from sets.

Finally, there are many choices for how to implement the sets. The Spar k
paper evaluates various data st ructures for represent ing points-to sets [39], “ nd-
ing that hybrid sets (using lists for small sets, and bit -vectors for large sets) yield
the best results. We found the shared bit -vector implementat ion from CLA [26]
to be even more e� cient than the hybrid sets used by Spar k .

4.2.2 M eth od compi lat ion. The left column of Figure 2 shows the various
events during virtual machine execut ion that invoke the const raint “ nder. This
sect ion is only concerned with “ nding int raprocedural const raints during method
compilation; later sect ions discuss other kinds of events.

Pointer Analysis in the Presence of Dynamic Class Loading 105

The int raprocedural const raint “ nder analyzes the code of a method, and
models it in the const raint graph. It is a ” ow-insensit ive pass of the opt imizing
compiler of Jikes RVM, operating on the high-level register-based intermediate
representat ion (HIR) . HIR decomposes access paths by int roducing temporaries,
so that no access path contains more than one pointer dereference.

Column •A ct ionsŽ in Table 2 gives the act ions of the const raint “ nder when
it encounters the stat ement in Column • Stat ementŽ. Column •R epresent con-
st raintsŽ shows the const raints implicit in the act ions of the const raint “ nder
using mathematical notat ion.

Table 2. Int raprocedural const raint “nder .

Statement Act ions Represent const raints

v� = v (move v � v�) ” owTo(v).add(v�) pointsTo(v) � pointsTo(v�)
v� = v.f (load v.f � v�) ” owTo(v.f).add(v�) � h � pointsTo(v) :

pointsTo(h.f) � pointsTo(v�)
v� .f = v (store v � v� .f) ” owTo(v).add(v� .f), � h � pointsTo(v�) :

” owFrom(v� .f).add(v) pointsTo(v) � pointsTo(h.f)
� : v = new . . . (alloc h� � v) pointsTo(v).add(h�) { h� } � pointsTo(v)

In addit ion to the act ions in Table 2, the analysis needs to address some more
issues during method compilation.
4.2.2.1 U nopt im ized code. The int raprocedural const raint “ nder is imple-
mented as a pass of the Jikes RVM opt imizing compiler. However, Jikes RVM
compiles some methods only with a baseline compiler, which does not use a
representat ion that is amenable to const raint “ nding. We handle such methods
by running the const raint “ nder as part of a t runcated opt imizing compilation.
Other virtual machines, where some code is not compiled at all, but interpreted,
can take a similar approach.
4.2.2.2 R ecompi lat ion of meth ods. Many JVMs, including Jikes RVM,
may recompile a method (at a higher opt imization level) if it executes frequent ly.
The recompiled methods may have new variables or code int roduced by opt i-
mizations (such as inlining). Since each inlining context of an allocation site is
modeled by a separate h-node, the analysis generates new constraints for the
recompiled methods and integrates them with the const raints for any previously
compiled versions of the method.
4.2.2.3 M agic. Jikes RVM has some internal • magicŽoperations, for example,
to allow direct manipulation of pointers. The compilers expand magic in special
ways direct ly into low-level code. Likewise, the analysis expands magic in special
ways direct ly into const raints.

4.3 Cal l Gr aph Bu i lder

For each call-edge, the analysis generates const raints that model the data ” ow
through parameters and return values. Parameter passing is modeled as a move

106 M. Hirzel, A. Diwan, and M. Hind

from actuals (at the call-site) to formals (of the callee). Each return stat ement
in a method m is modeled as a move to a special v-node vret val(m) . The data
” ow of the return value to the call-site is modeled as a move to the v-node that
receives the result of the call.

We use CHA (Class Hierarchy Analysis [16,20]) to “ nd call-edges. A more
precise alternative to CHA is to const ruct the call graph on-the-” y based on the
results of the pointer analysis. We decided against that approach because prior
work indicated that the modest improvement in precision does not just ify the
cost in e� ciency [39]. In work concurrent with ours, Qian and Hendren developed
an even more precise alternative based on low-overhead pro“ ling [45].

CHA is a stat ic whole-program analysis, but to support Andersen•s analysis
online, CHA must also run online, i.e., deal with dynamic class loading. The
key to solving this problem is the observation that for each call-edge, either
the call-site is compiled “ rst , or the callee is compiled “ rst . The constraints for
the call-edge are added when the second of the two is compiled. This works as
follows:

…When encountering a method m(vformal1 (m) , . . . , vformaln (m)), the call graph
builder

€ creates a tuple I m = � vret val(m) , vformal1 (m) , . . . , vformaln (m) � for m as a
callee,

€ “ nds all corresponding tuples for matching call-sites that have been com-
piled in the past , and adds constraints to model the moves between the
corresponding v-nodes in the tuples, and

€ stores the tuple I m for lookup on behalf of call-sites that will be compiled
in the future.

…When encountering a call-site c : vret val(c) = m(vact ual1 (c) , . . . , vact ualn (c)),
the call graph builder

€ creates a tuple I c = � vret val(c) , vact ual1 (c) , . . . , vact ualn (c) � for call-site c,
€ looks up all corresponding tuples for matching callees that have been

compiled in the past , and adds constraints to model the moves between
the corresponding v-nodes in the tuples, and

€ stores the tuple I c for lookup on behalf of callees that will be compiled
in the future.

Besides parameter passing and return values, there is one more kind of in-
terprocedural data ” ow that our analysis needs to model: except ion handling.
Except ions lead to ” ow of values (t he except ion object) between the site that
throws an except ion and the catch clause that catches the except ion. For simplic-
ity, our init ial prototype assumes that any throws can reach any catch clause;
type “ ltering eliminates many of these possibilit ies later on. One could easily
imagine making this more precise, for example by assuming that throws can
only reach catch clauses in the current method or its (t ransit ive) callers.

4.4 Const r aint Pr opagato r

The propagator propagates points-to sets following the const raints that are im-
plicit in the ” ow sets unt il the points-to sets reach a “ xed point . In order to avoid

Pointer Analysis in the Presence of Dynamic Class Loading 107

wasted work, our algorithm maintains two pieces of information, a worklist of
v-nodes and isCharged-bits on h.f -nodes, that enable it to propagate only the
changed points-to sets at each iteration (rather than propagating all points-to
sets). The worklist contains v-nodes whose points-to sets have changed and thus
need to be propagated, or whose ” ow sets have changed and thus the points-to
sets need to be propagated to addit ional nodes. The constraint “ nder init ializes
the worklist .

The algorithm in Figure 3, which is a variation of the algorithm from
Spar k [39], implements the const raint propagator component of Figure 2.

F ig. 3. Const raint propagator

The propagator puts a v-node on the worklist when its points-to set changes.
Lines 4-10 propagate the v-node•s points-to set to nodes in its ” ow-to sets. Lines
11-19 update the points-to set for all “ elds of objects pointed to by the v-node.
This is necessary because for the h-nodes that have been newly added to v•s
points-to set , the ” ow to and from v.f carries over to the corresponding h.f -
nodes. Line 12 relies on the redundant ” ow-from sets.

The propagator sets the isCharged-bit of an h.f -node to t rue when its points-
to set changes. To discharge an h.f -node, the algorithm needs to consider all

108 M. Hirzel, A. Diwan, and M. Hind

” ow-to edges from all v.f -nodes that represent it (lines 20-24). This is why it
does not keep a worklist of charged h.f -nodes: to “ nd their ” ow-to targets, it
needs to iterate over v.f -nodes anyway. This is the only part of the algorithm
that iterates over all (v.f -) nodes: all other parts of the algorithm att empt to
update points-to sets while visit ing only nodes that are relevant to the points-to
sets being updated.

To improve the e� ciency of this iterative part , the implementat ion uses a
cache that remembers the charged nodes in shared points-to sets. The cache
speeds up the loops at Lines 20 and 21 by an order of magnitude.

The propagator performs on-the-” y “ ltering by types: it only adds an h-node
to a points-to set of a v-nodeor h.f -node if it representsheap objectsof a subtype
of the declared type of the variable or “ eld. Lhoták and Hendren found that this
helps keep the points-to sets small, improving both precision and e� ciency of
the analysis [39]. Our experiences con“ rm this observation.

The propagator creates h.f -nodes lazily the “ rst t ime it adds elements to
their points-to sets, in lines 9 and 14. It only creates h.f -nodes if instances of
the type of h have the “ eld f . This is not always the case, as the following
example illust rates. Let A, B , C be three classes such that C is a subclass of
B , and B is a subclass of A. Class B declares a “ eld f . Let hA , hB , hC be h-
nodes of type A, B , C, respect ively. Let v be a v-node of declared type A, and let
v.pointsTo = { hA , hB , hC } . Now, data ” ow to v.f should add to the points-to
sets of nodes hB .f and hC .f , but there is no node hA .f .

We also experimented with the opt imizations part ial online cycle elimina-
t ion [19] and collapsing of single-ent ry subgraphs [46]. They yielded only modest
performance improvements compared to shared bit -vectors [26] and type “ lter-
ing [39]. Part of the reason for the small payo� may be that our data st ructures
do not put h.f -nodes in ” ow-to sets (á la Bane [19]).

4.5 R esolut ion M anager

The JVM speci“ cation allows a Java method to have unresolved references to
“ elds, methods, and classes [42]. A class reference is resolved when the class is
instant iated, when a stat ic “ eld in the class is used, or when a stat ic method in
the class is called.

The unresolved references in the code (some of which may never get resolved)
create two main di� cult ies for the analysis.

First , the CHA (class hierarchy analysis) that implements the call graph
builder does not work when the class hierarchy of the involved classes is not yet
known. Our current approach to this is to be conservative: if, due to unresolved
classes, CHA cannot yet decide whether a call edge exists, the call graph builder
adds an edge if the signatures match.

Second, the propagator uses types to perform type “ ltering and also for
deciding which h.f -nodes belong to a given v.f -node. If the involved types are
not yet resolved, this does not work. Therefore, the resolut ion manager defers
all ” ow sets and points-to sets involving nodes of unresolved types, thus hiding
them from the propagator:

Pointer Analysis in the Presence of Dynamic Class Loading 109

…When the const raint “ nder creates an unresolved node, it registers the node
with theresolut ion manager. A node isunresolved if it refers to an unresolved
type. An h-noderefers to thetypeof itsobjects; a v-noderefers to itsdeclared
type; and a v.f -node refers to the type of v, the type of f , and the type in
which f is declared.

…When the const raint “ nder would usually add a node to a ” ow set or points-
to set of another node, but one or both of them are unresolved, it defers
the information for later instead. Table 3 shows the deferred sets stored at
unresolved nodes. For example, if the const raint “ nder “ nds that v should
point to h, but v is unresolved, it adds h to v•s deferred pointsTo set . Con-
versely, if h is unresolved, it adds v to h•s deferred pointedToBy set . If both
are unresolved, the points-to information is stored twice.

Table 3. Deferred sets stored at unresolved nodes.

Node kind Flow Points-to

h-node none pointedToBy[v]
v-node ” owFrom[v], ” owFrom[v.f], ” owTo[v], ” owTo[v.f] pointsTo[h]
h.f -node there are no unresolved h.f -nodes
v.f -node ” owFrom[v], ” owTo[v] none

…When a type is resolved, the resolut ion manager noti“ es all unresolved nodes
that have registered for it . When an unresolved node is resolved, it iterates
over all deferred sets stored at it , and att empts to add the information to the
real model that is visible to the propagator. If a node stored in a deferred set
is not resolved yet itself, the information will be added in the future when
that node gets resolved.

With this design, some constraints will never be added to the model, if their
types never get resolved. This saves unnecessary propagator work. Qian and
Hendren developed a similar design independent ly [45].

Before becoming aware of the subt let ies of the problems with unresolved
references, we used an overly conservative approach: we added the const raints
eagerly even when we had incomplete information. This imprecision led to very
large points-to sets, which in turn slowed down our analysis prohibit ively. Our
current approach is both more precise and more e� cient .

4.6 Othe r Const r aint -Gene r at ing Event s

This sect ion discusses the remaining events in the left column of Figure 2 that
serve as inputs to the const raint “ nder.

4.6.1 V M bu i lding and sta r t -up . Jikes RVM itself is writt en in Java, and
begins execut ion by loading a boot image(a “ le-based image of a fully init ialized

110 M. Hirzel, A. Diwan, and M. Hind

VM) of pre-allocated Java objects for the JIT compilers, GC, and other run-
t ime services. These objects live in the same heap as application objects, so our
analysis must model them.

Our analysis models all the code in the boot image as usual, with the in-
t raprocedural const raint “ nder pass from Sect ion 4.2.2 and thecall graph builder
from Sect ion 4.3. Our analysis models the data snapshot of the boot image with
special boot image h-nodes, and with points-to sets of global v-nodes and boot
image h.f -nodes. The program that creates the boot image does not maintain a
mapping from objects in the boot image to their actual allocation site, and thus,
the boot image h-nodes are not allocation sites, instead they are synthesized
at boot image writ ing t ime. Finally, the analysis propagates on the combined
constraint system. This models how the snapshot of the data in the boot image
may be manipulated by future execut ion of the code in the boot image.

Our techniques for correct ly handling the boot image can be extended to
form a general hybrid o� ine/o nline approach, where parts of the application are
analyzed o� ine (as the VM is now) and the rest of the application is handled
by the online analysis presented in this work. Such an approach could be useful
for applications where the programmer asserts no use of the dynamic language
features in parts of the application.

4.6.2 Class loading. Even though much of this paper revolves around mak-
ing Andersen•s analysis work for dynamic class loading, most analysis act ions
actually happen during other events, such as method compilation or type res-
olut ion. The only act ion that does take place exact ly at class loading t ime is
that the const raint “ nder models the ConstantValue bytecode att ribute of stat ic
“ elds with const raints [42, Sect ion 4.5].

4.6.3 R e”ect ion execut ion. Java programs can invoke methods, access and
modify “ elds, and instant iate objects using re” ect ion. Although approaches such
as String analysis [12] could predict which ent it ies are manipulated in special
cases, this problem is undecidable in the general case. Thus, when compiling
code that uses re” ect ion, there is no way of determining which methods will be
called, which “ elds manipulated, or which classes instant iated at runt ime.

One solut ion is to assume the worst case. We felt that this was too conser-
vative and would int roduce signi“ cant imprecision into the analysis for the sake
of a few operations that were rarely executed. Other pointer analyses for Java
side-step this problem by requiring users of the analysis to provide hand-coded
models describing the e� ect of the re” ect ive act ions [39,60].

Our solut ion is to handle re” ect ion when the code is actually executed. We
inst rument the virtual machine service that handles re” ect ion with code that
adds const raints dynamically. For example, if re” ect ion stores into a “ eld, the
const raint “ nder observes the actual source and target of the store and generates
a const raint that captures the semant ics of the store at that t ime.

This st rategy for handling re” ect ion int roduces new constraints when the
re” ect ive code does something new. Fortunately, that does not happen very

Pointer Analysis in the Presence of Dynamic Class Loading 111

often. When re” ect ion has int roduced new constraints and a client needs up-to-
date points-to results, it must t rigger a re-propagation.

4.6.4 Nat ive code execut ion. The Java Native Interface (JNI) allows Java
code to interact with dynamically loaded native code. Usually, a JVM cannot an-
alyze that code. Thus, an analysisdoesnot know (i) what valuesmay bereturned
by JNI methods and (ii) how JNI methods may manipulate data st ructures of
the program.

Our approach is to be imprecise, but conservative, for return values from JNI
methods, while being precise for data manipulation by JNI methods. If a JNI
method returns a heap allocated object , the const raint “ nder assumes that it
could return an object from any allocation site. This is imprecise, but easy to
implement . The constraint propagation uses type “ ltering, and thus, will “ lter
the set of heap nodes returned by a JNI method based on types. If a JNI method
manipulates data st ructures of the program, the manipulations must go through
the JNI API, which Jikes RVM implements by calling Java methods that use
re” ect ion. Thus, JNI methods that make calls or manipulate object “ elds are
handled precisely by our mechanism for re” ect ion.

5 Validat ion

Implement ing a pointer analysis for a complicated language and environment
such as Java and Jikes RVM is a di� cult task: the pointer analysis has to handle
numerous corner cases, and missing any of the cases results in incorrect points-to
sets. To help us debug our pointer analysis (t o a high con“ dence level) we built
a validation mechanism.

5.1 Val idat ion M echan ism

We validate the pointer analysis results at GC (garbage collect ion) t ime. As GC
traverses each pointer, we check whether the points-to set captures the pointer:
(i) When GC “ nds a stat ic variable p holding a pointer to an object o, our
validation code “ nds the nodes v for p and h for o. Then, it checks whether the
points-to set of v includes h. (ii) When GC “ nds a “ eld f of an object o holding
a pointer to an object o� , our validation code “ nds the nodes h for o and h� for o� .
Then, it checks whether the points-to set of h.f includes h� . If either check fails,
it prints a warning message.

To make the points-to sets correct at GC t ime, we propagate the const raints
(Sect ion 4.4) just before GC starts. As there is no memory available to grow
points-to sets at that t ime, we modi“ ed Jikes RVM•s garbage collector to set
aside some extra space for this purpose.

Our validation methodology relieson theability to map concreteheap objects
to h-nodes in theconst raint graph. To facilitat e this, weadd an extra header word
to each heap object that maps it to its corresponding h-node in the const raint
graph. For h-nodes represent ing allocation sites, we install this header word at

112 M. Hirzel, A. Diwan, and M. Hind

allocation t ime. This ext ra word is only used for validation runs; the pointer
analysis does not require any change to the object header.

5.2 Val idat ion A necdote s

Our validation methodology helped us “ nd many bugs, some of which were quite
subt le. Below are two examples. In both cases, there was more than one way in
which bytecode could represent a Java-level const ruct . Both t imes, our analysis
dealt correct ly with the more common case, and the other case was obscure,
yet legal. Our validation methodology showed us where we missed something;
without it , we might not even have suspected that something was wrong.

5.2.1 Field r efer ence class. In Java bytecode, a “ eld referenceconsistsof the
name and type of the “ eld, as well as a class reference to the class or interface
• in which the “ eld is to be foundŽ ([42, Sect ion 5.1]). Even for a stat ic “ eld,
this may not be the class that declared the “ eld, but a subclass of that class.
Originally, we had assumed that it must be the exact class that declared the
stat ic “ eld, and had writt en our analysis accordingly to maintain separate v-
nodes for stat ic “ elds with dist inct declaring classes. When the bytecode wrote
to a “ eld using a “ eld reference that ment ions the subclass, the v-node for the
“ eld that ment ions the superclass was missing some points-to set elements. That
resulted in warnings from our validation methodology. Upon invest igating those
warnings, we became aware of the incorrect assumpt ion and “ xed it .

5.2.2 Field ini t ial izer att r ibute . In Java source code, a stat ic “ eld declara-
t ion has an opt ional init ialization, for example, • “na l stat ic String s = "abc" ;Ž.
In Java bytecode, this usually t ranslates into init ialization code in the class ini-
t ializer method <clinit >() of the class that declares the “ eld. But somet imes, it
t ranslates into a ConstantValue att ribute of the “ eld instead ([42, Sect ion 4.5]).
Originally, we had assumed that class init ializers are the only mechanism for
init ializing stat ic “ elds, and that we would “ nd these constraints when running
the const raint “ nder on the <clinit >() method. But our validation methodology
warned us about v-nodes for stat ic “ elds whose points-to sets were too small.
Knowing exact ly for which “ elds that happened, we looked at the bytecode,
and were surprised to see that the <clinit >() methods didn•t init ialize the “ elds.
Thus, we found out about theConstantValuebytecodeatt ribute, and added con-
st raints when class loading parses and executes that att ribute (Sect ion 4.6.2).

6 Client s

This sect ion invest igates two example clients of our analysis, and how they can
deal with the dynamic nature of our analysis.

Method inlining can bene“ t from pointer analysis: if the points-to set ele-
ments of v all have the same implementat ion of a method m, the call v.m() has

Pointer Analysis in the Presence of Dynamic Class Loading 113

only onepossible target . Modern JVMs[4,13,43,53] typically usea dual execut ion
st rategy, where each method is init ially either interpreted or compiled without
opt imizations. No inlining is performed for such methods. Later, an opt imizing
compiler that may perform inlining recompiles the minority of frequent ly execut-
ing methods. Because inlining is not performed during the init ial execut ion, our
analysis does not need to propagate const raints unt il the opt imizing compiler
needs to make an inlining decision.

Since the results of our pointer analysis may be invalidated by any of the
events in the left column of Figure 2, an inlining client must be prepared to
invalidate inlining decisions. Techniques such as code patching [13] and on-stack
replacement [21,34] support invalidation. If instant invalidation is needed, our
analysis must repropagate every t ime it “ nds new constraints. There are also
techniques for avoiding invalidation of inlining decisions, such as pre-existence
based inlining [17] and guards [5,35], that would allow our analysis to be lazy
about repropagating after it “ nds new constraints.

CBGC (connectivity-based garbage collection) is a new garbage collect ion
technique that requires pointer analysis [32]. CBGC uses pointer analysis results
to part it ion heap objects such that connected objects are in the same part it ion,
and the pointer analysis can guarantee the absence of certain cross-part it ion
pointers. CBGC exploits the observation that connected objects tend to die
together [33], and certain subsets of part it ions can be collected while completely
ignoring the rest of the heap.

CBGC must know the part it ion of an object at allocation t ime. However,
CBGC can easily combine part it ions later if the pointer analysis “ nds that they
are st rongly connected by pointers. Thus, there is no need to perform a full prop-
agation at object allocation t ime. However, CBGC does need full conservative
points-to information when performing a garbage collect ion; thus, CBGC needs
to request a full propagation before collect ing. Between collect ions, CBGC does
not need conservative points-to information.

7 Per formance

This sect ion evaluates the e� ciency of our pointer analysis implementat ion in
Jikes RVM 2.2.1. Prior work (e.g., [39]) has evaluated the precision of Andersen•s
analysis. In addit ion to the analysis itself, our modi“ ed version of Jikes RVM
includes the validation mechanism from Sect ion 5. Besides the analysis and vali-
dation code, we also added a number of pro“ lers and tracers to collect the results
presented in this sect ion. For example, at each yield-point (method prologue or
loop back-edge), a stack walk determines whether the yield-point belongs to
analysis or application code, and counts it accordingly. We performed all ex-
periments on a 2.4GHz Pent ium 4 with 2GB of memory running Linux, kernel
version 2.4.

Since Andersen•s analysis has cubic t ime complexity and quadratic space
complexity (in the size of the code), opt imizations that increase the size of the
code can dramatically increase the const raint propagation t ime. In our experi-

114 M. Hirzel, A. Diwan, and M. Hind

ence, aggressive inlining can increase constraint propagation t ime by up to a fac-
tor of 5 for our benchmarks. In default mode, Jikes RVM performs inlining (and
opt imizations) only inside the hot application methods, but is more aggressive
about methods in theboot image. WeforceJikesRVM to bemorecaut iousabout
inlining inside boot image methods by using a FastA dapt iveMarkSweep image
and disabling inlining at build t ime. During benchmark execut ion, Jikes RVM
does, however, perform inlining for hot boot image methods when recompiling
them.

7.1 Ben chmar k Char acte r ist ics

Table 4 describes our benchmark suite; null is a dummy benchmark with an
empty main method. Column •A nalyzed methodsŽ gives the number of methods
analyzed. We analyze a method when it is part of the boot image, or when
the program executes it for the “ rst t ime. The analyzed methods include the
benchmark•s methods, library methods called by the benchmark, and methods
belonging to Jikes RVM itself. The null benchmark provides a baseline: its data
represents approximately the amount that Jikes RVM adds to the size of the
application. This data is approximate because, for example, some of the methods
called by the opt imizing compiler may also be used by the application (e.g.,
methods on container classes). Column •Loaded classesŽ gives the number of
classes loaded by the benchmarks. Once again, the number of loaded classes for
the null benchmark provides a baseline. Finally, Column •R un t imeŽ gives the
run t ime for our benchmarks using our con“ guration of the Jikes RVM.

Table 4. Benchmark programs.

Program Command line arguments Analyzed methods Loaded classes Run t ime

nul l none 15,598 1,363 1s
javalex qb1.lex 15,728 1,389 37s
compress -m1 -M1 -s100 15,728 1,391 14s
db -m1 -M1 -s100 15,746 1,385 28s
mt rt -m1 -M1 -s100 15,858 1,404 14s
mpegaudio -m1 -M1 -s100 15,899 1,429 27s
jack -m1 -M1 -s100 15,962 1,434 21s
richards none 15,963 1,440 4s
hsql -client s 1 -tp c 50000 15,992 1,424 424s
jess -m1 -M1 -s100 16,158 1,527 29s
javac -m1 -M1 -s100 16,464 1,526 66s
xalan 1 1 17,057 1,716 10s

The Jikes RVM methods and classes account for a signi“ cant port ion of the
code in our benchmarks. Thus, our analysis has to deal with much more code
than it would have to in a JVM that is not writt en in Java. On the other hand,
writ ing the analysis itself in Java had signi“ cant software engineering bene“ ts;

Pointer Analysis in the Presence of Dynamic Class Loading 115

 15,500

 15,550

 15,600

 15,650

 15,700

 15,750

 15,800

 15,850

 15,900

 0 5 10 15 20 25 30 35

an
al

yz
ed

 m
et

ho
ds

yield points (in millions)

F ig. 4. Yield-points versus analyzed methods for mpegaudio. The “r st shown data
point is the main() method.

for example, the analysis relies on garbage collect ion for its data st ructures. In
addit ion, the absence of art i“ cal boundaries between the analysis, other parts
of the runt ime system, and the application exposes more opportunit ies for op-
t imizations. Current t rends show that the bene“ ts of writ ing system code in a
high-level, managed, language are gaining wider recognit ion. For example, Mi-
crosoft is pushing towards implement ing more of Windows in managed code.

Figure 4 shows how the number of analyzed method increase over a run of
mpegaudio. The x-axis represents t ime measured by the number of thread yield-
pointsencountered in a run. There isa thread yield-point in theprologueof every
method and in every loop. We ignore yield-points that occur in our analysis code
(t his would be hard to do if we used real t ime for the x-axis). The y-axis starts
at 15,500: all methods analyzed before the “ rst method in this graph are in the
boot image and are thus analyzed once for all benchmarks. The graphs for other
benchmarks have a similar shape, and therefore we omit them.

From Figure4, wesee that thereare two signi“ cant stages (around the10 and
25 million yield-point marks) when the application is execut ing only methods
that it has encountered before. At other t imes, the application encounters new
methods as it executes. We expect that for longer running benchmarks (e.g., a
webserver that runs for days), the number of analyzed methods stabilizes after
a few minutes of run t ime. That point may be an ideal t ime to propagate the
const raints and use the results to perform opt imizations.

116 M. Hirzel, A. Diwan, and M. Hind

7.2 A nalysis Cost

Our analysis has two main costs: const raint “ nding and constraint propagation.
Constraint “ nding happenswhenever weanalyzea new method, load a new class,
etc. Constraint propagation happens whenever a client of the pointer analysis
needspoints-to information. Wede“ neeager propagation to bepropagation after
every event from the left column of Figure 2, if it generated new constraints. We
de“ ne lazy propagation to be propagation that occurs just once at the end of
the program execut ion.

7.2.1 Cost in space. Table 5 shows the tota l allocation for our benchmark
runs. Column •N o analysisŽ gives the number of megabytes allocated by the
program without our analysis. Column •N o propagationŽ gives the allocation
when the analysis generates, but does not propagate, const raints. Thus, this
column gives the space overhead of just represent ing the const raints. Columns
• EagerŽ, •La zyŽ, and • At GCŽ give the allocation when using eager, lazy, and
at GC propagation. The di� erence between these and the •N o propagationŽ
column represents the overhead of represent ing the points-to sets. Somet imes we
see that doing more work actually reduces the amount of tota l allocation (e.g.,
mpegaudio allocates more without any analysis than with lazy propagation).
This phenomenon occurs because our analysis is interleaved with the execut ion
of thebenchmark program, and thus theJikesRVM adapt iveopt imizer opt imizes
di� erent methods with our analysis than without our analysis.

Table 5. Total allocat ion (in megabytes)

Benchmark Eager At GC Lazy No propagat ion No analysis

nul l 48.5 48.1 48.8 13.5 9.7
javalex 621.7 104.7 110.6 70.0 111.8
compress 416.2 230.0 167.0 129.3 130.2
db 394.4 213.8 151.0 112.7 113.6
mt rt 721.9 303.8 240.5 201.5 172.9
mpegaudio 755.9 145.8 83.1 42.8 137.0
jack 1,782.4 418.4 354.8 309.2 322.8
richards 1,117.8 61.3 67.7 26.6 12.6
hsql 4,047.0 3,409.6 3,343.8 3,291.1 3,444.6
jess 4,694.8 458.0 394.4 341.4 398.3
javac 2,023.0 450.4 381.3 328.2 429.3
xalan 6,074.9 166.4 200.4 131.5 37.6

Finally, since the boot image needs to include constraints for the code and
data in the boot image, our analysis in” ates the boot image size from 31.5
megabytes to 73.4 megabytes.

Pointer Analysis in the Presence of Dynamic Class Loading 117

Table 6. Percent of execut ion t ime in const raint “nd ing

Program Analyzing methods Resolving classes and arrays

nul l 69.16% 3.68%
javalex 2.02% 0.39%
compress 5.00% 1.22%
db 1.77% 0.39%
mtrt 7.68% 1.70%
mpegaudio 6.23% 6.04%
jack 6.13% 2.10%
richards 21.98% 5.88%
hsql 0.29% 0.09%
jess 5.59% 1.24%
javac 3.20% 1.60%
xalan 26.32% 8.66%

7.2.2 Cost of const r aint “nd ing. Table 6 gives the percentage of overall ex-
ecut ion t ime spent in generating const raints from methods (Column •A nalyzing
methodsŽ) and from resolut ion events (Column •R esolving classes and arraysŽ).
For these execut ions we did not run any propagations. Table 6 shows that gen-
erating const raints for methods is the dominant part of const raint generation.
Also, as the benchmark run t ime increases, the percentage of t ime spent in con-
st raint generation decreases. For example, the t ime spent in const raint “ nding is
a negligible percentage of the run t ime for our longest running benchmark, hsql.

7.2.3 Cost of pr opagat ion. Table 7 shows the cost of propagation. Columns
• CountŽ give the number of propagations that occur in our benchmark runs.
Columns • TimeŽ give the arithmet ic mean ± standard deviation of the t ime (in
seconds) it takes to perform each propagation. We included the lazy propagation
data to give an approximate sense for how long the propagation would take if
we were to use a stat ic pointer analysis. Recall, however, that these numbers
are st ill not comparable to stat ic analysis numbers of these benchmarks in prior
work, since, unlike them, we also analyze the Jikes RVM compiler and other
system services.

Table 7 shows that the mean pause t ime due to eager propagation varies
between 3.8 and 16.8 seconds for the real benchmarks. In contrast , a full (lazy)
propagation is much slower. Thus, our algorithm is e� ect ive in avoiding work on
parts of the program that have not changed since the last propagation.

Our results (omitt ed for space considerations) showed that the propagation
cost did not depend on which of the events in the left column of Figure 2 gen-
erated new constraints that were the reason for the propagation.

Figure 5 presents the spread of propagation t imes for javac. A point (x,y) in
thisgraph says that propagation • xŽtook • yŽseconds. Out of 1,107 propagations
in javac, 524 propagations take under 1 second. The remaining propagations are
much more expensive (10 seconds or more), thus increasing the average. We

118 M. Hirzel, A. Diwan, and M. Hind

Table 7. Propagat ion stat ist ics (t imes in seconds)

Eager At GC Lazy
Program Count T ime Count T ime Count T ime

nul l 1 135.6± 0.0 1 120.7± 0.0 1 137.8± 0
javalex 166 13.6± 22.0 1 120.7± 0.0 1 158.4± 0
compress 127 8.6± 18.7 3 104.7± 23.6 1 142.8± 0
db 140 10.0± 20.2 3 106.1± 24.8 1 144.5± 0
mtrt 262 5.5± 14.4 3 106.8± 24.7 1 148.0± 0
mpegaudio 317 5.5± 13.4 3 105.4± 24.1 1 144.3± 0
jack 392 10.9± 17.8 3 114.4± 33.8 1 161.8± 0
richards 410 3.8± 10.9 1 120.8± 0.0 1 134.8± 0
hsql 391 10.1± 20.6 6 76.6± 94.8 1 426.7± 0
jess 734 16.8± 20.5 3 117.7± 38.5 1 182.4± 0
javac 1,103 12.5± 22.9 5 114.3± 97.6 1 386.7± 0
xalan 1,726 11.2± 21.4 1 120.5± 0.0 1 464.6± 0

also discern that more expensive propagations occur later in the execut ion. The
omitt ed graphs for other benchmarks have a similar shape. Although we present
the data for eager propagation, clients of our analysis do not necessarily require
eager propagation (Sect ion 6).

As expected, the columns for propagation at GC in Table 7 show that if
we propagate less frequent ly, the individual propagations are more expensive;
they are st ill on average cheaper than performing a single full propagation at
the end of the program run. Recall that, for Java programs, performing a stat ic
analysisof theent ireprogram isnot possiblebecausewhat const itutes the• ent ire
programŽ is not known unt il it executes to complet ion.

7.3 U nde r stand ing th e Cost s of Ou r Const r aint Pr opagat ion

The speed of our const raint propagator (a few seconds to update points-to infor-
mation) may be adequate for long-running clients, but may not be feasible for
short -running clients. For example, a web server that does not touch new meth-
ods after a few minutes of running can bene“ t from our current analysis: once
the web server stops touching new methods, the propagation t ime of our anal-
ysis goes down to zero. Since we did not have a server application in our suite,
we con“ rmed this behavior by running two benchmarks (javac and mpegaudio)
mult iple t imes in a loop: after the “ rst run, there was litt le to no overhead from
constraint “ nding or const raint propagation (well under 1%). On the other hand,
an application that only runs for a few minutes may “ nd our analysis to be pro-
hibit ively slow. On pro“ ling our analysis, we found that the worklist part (lines
2 to 19 in Figure 3) takes up far more of the propagation t ime than the iterative
part (lines 20 to 26 in Figure 3). Thus, in our future work, we will “ rst focus on
the worklist part to improve propagator performance.

Pointer Analysis in the Presence of Dynamic Class Loading 119

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

tim
e

(in
 s

ec
on

ds
)

number of propagations

F ig. 5. Propagat ion t imes for javac (eager).

8 Conclusions

We describe and evaluate the “ rst non-t rivial pointer analysis that handles all of
Java. Java features such as dynamic class loading, re” ect ion, and native methods
int roduce many challenges for pointer analyses. Some of these prohibit the use
of stat ic pointer analyses. We validate the output of our analysis against actual
pointers created during program runs. We evaluate our analysis by measuring
many aspects of its performance, including theamount of work our analysis must
do at run t ime. Our results show that our analysis is feasible and fast enough
for server applications.

References

1. G. Agrawal, J. Li, and Q. Su. Evaluat ing a demand driven technique for call graph
const ruct ion. In Internat. Conference on Compiler Constru cti on (CC), 2002.

2. B. Alpern, C. R. At tanasio, J. J. Barton, M. G. Bur ke, P. Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, T . Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalape�no virtual
machine. IBM Systems Journal, 39(1), 2000.

3. L. O. Andersen. Program Analysis and Specializati on for the C Programming Lan-
guage. PhD thesis, University of Copenhagen, 1994. DI KU report 94/19.

4. M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adapt ive opt imiza-
t ion in the Jalape�no JVM. In Obj. -Ori ented Prog., Systems, Lang., and Applic.
(OOPSLA), 2000.

120 M. Hirzel, A. Diwan, and M. Hind

5. M. Arnold and B. G. Ryder. Thin guards: A simple and e� ect ive technique for
reducing the penalty of dynamic class loading. In European Conference for Object-
Ori ented Prog. (ECOOP), 2002.

6. D. F. Bacon and P. F. Sweeney. Fast stat ic analysis of C+ + virtual funct ion calls.
In Obj. -Ori ented Prog., Systems, Lang., and Applic. (OOPSLA), 1996.

7. J. Bogda and A. Singh. Can a shape analysis work at run-t ime? In Java Virtu al
Machine Research and Technology Symp. (JVM), 2001.

8. M. Bur ke and L. Torczon. Interprocedural opt imizat ion: Eliminat ing unnecessary
recompilat ion. Trans. on Prog. Lang. and Systems (TOPLAS), 1993.

9. R. Chat terjee, B. G. Ryder, and W. A. Landi. Relevant context inference. In
Prin ciples of Prog. Lang. (POPL), 1999.

10. B.-C. Cheng and W.-m. W. Hwu. Modular interprocedural pointer analysis using
access paths: design, implementat ion, and evaluat ion. In Prog. Lang. Design and
Impl. (PLD I), 2000.

11. J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midki� . Escape analysis
for Java. In Obj. -Ori ented Prog., Systems, Lang., and Applic. (OOPSLA), 1999.

12. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of st ring
expressions. In Stati c Analysis Symposium (SAS), 2003.

13. M. Cierniak, G.-Y. Lueh, and J. M. St ichnoth. Pract icing JUDO: Java under
dynamic opt imizat ions. In Prog. Lang. Design and Impl. (PLD I), 2000.

14. K . D. Cooper, K . Kennedy, and L. Torczon. Interprocedural opt imizat ion: Elimi-
nat ing unnecessary recompilat ion. Trans. on Prog. Lang. and Systems (TOPLAS),
1986.

15. M. Das. Uni“ cat ion-based pointer analysis with direct ional assignments. In Prog.
Lang. Design and Impl. (PLD I), 2000.

16. J. Dean, D. Grove, and C. Chambers. Opt imizat ion of object -oriented programs
using stat ic class hierarchy analysis. In European Conference for Object-Ori ented
Prog. (ECOOP), 1995.

17. D. Det lefs and O. Agesen. In lining of virtual methods. In European Conference
for Object-Ori ented Prog. (ECOOP), 1999.

18. A. Diwan, K . S. McK inley, and J. E. B. Moss. Using types to analyze and opt imize
object -oriented programs. Trans. on Prog. Lang. and Systems (TOPLAS), 2001.

19. M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Part ial online cycle eliminat ion
in inclusion const raint graphs. In Prog. Lang. Design and Impl. (PLD I), 1998.

20. M. F. Fernandez. Simple and e� ect ive link-t ime opt imizat ion of Modula-3 pro-
grams. In Prog. Lang. Design and Impl. (PLD I), 1995.

21. S. J. Fink and F. Qian. Design, implementat ion, and evaluat ion of adapt ive re-
compilat ion with on-stack replacement . In Code Gen. and Opti mizati on (CGO),
2003.

22. J. S. Foster, M. Fähndrich, and A. Aiken. Flow-insensit ive points-to analysis with
term and set const raints. Technical report , University of California at Berkeley,
1997.

23. D. P. Grove. E� ecti ve Interprocedural Opti mizati on of Object-Ori ented Languages.
PhD thesis, University of Washington, 1998.

24. M. W. Hall, J. M. Mellor-Crummey, A. Carle, and R. G. Rodriguez. Fiat : A frame-
work for interprocedural analysis and t ransformat ions. In Workshop on Languages
and Compilers for Paral lel Computin g (LCPC), 1993.

25. T . Harr is. Early storage reclamat ion in a t racing garbage collector. ACM SIG-
PLA N Noti ces, 1999.

26. N. Heintze. Analysis of large code bases: The compile-link-analyze model.
http://cm.bell - labs.com/cm/cs/who/nch/cla.ps , 1999.

Pointer Analysis in the Presence of Dynamic Class Loading 121

27. N. Heintze and O. Tardieu. Demand-driven pointer analysis. In Prog. Lang. Design
and Impl. (PLD I), 2001.

28. N. Heintze and O. Tardieu. Ult ra-fast aliasing analysis using CLA: A million lines
of C code in a second. In Prog. Lang. Design and Impl. (PLD I), 2001.

29. L. Hendren. Paral lelizing Programs with Recursive Data Structures. PhD thesis,
Cornell University, 1990.

30. M. Hind. Pointer analysis: Haven•t we solved this problem yet? In Workshop on
Program Analysis for Software Tools and Engineerin g (PASTE), 2001.

31. M. Hind and A. Pioli. Wh ich pointer analysis should I use? In Internat. Symp. on
Software Testin g and Analysis (ISSTA), 2000.

32. M. Hirzel, A. Diwan, and M. Hertz. Connect ivity-based garbage collect ion. In
Obj. -Ori ented Prog., Systems, Lang., and Applic. (OOPSLA), 2003.

33. M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding the connect ivity of
heap objects. In Internat. Symp. on Memory Management (ISMM), 2002.

34. U. Hölzle, C. Chambers, and D. Ungar. Debugging opt imized code with dynamic
deopt imizat ion. In Prog. Lang. Design and Impl. (PLD I), 1992.

35. U. Hölzle and D. Ungar. Opt imizing dynamically-dispatched calls with run-t ime
type feedback. In Prog. Lang. Design and Impl. (PLD I), 1994.

36. A. C. K ing. Removing GC synchronizat ion (extended version).
http://www.acm.org/src/subpages/AndyKing/overview.html , 2003. Winner
(Graduate Division) ACM Student Research Compet it ion.

37. J. R. Larus and S. Chandra. Using t racing and dynamic slicing to tune compilers.
University of Wisconsin Technical Report 1174, Aug. 1993.

38. C. Lat tner and V. Adve. Data St ructure Analysis: An E� cient Context -Sensit ive
Heap Analysis. Tech. Report UIUCDCS-R-2003-2340, Computer Science Dept .,
Univ. of I llinois at Urbana-Champaign, Apr 2003.

39. O. Lhot ák and L. Hendren. Scaling Java points-to analysis using SPARK. In
Internat. Conference on Compiler Constru cti on (CC), 2003.

40. D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluat ing ” ow-
insenst it ive and context -insensit ive points-to analyses for Java. In Workshop on
Program Analysis for Software Tools and Engineerin g (PASTE), 2001.

41. D. Liang, M. Pennings, and M. J. Harrold. Evaluat ing the precision of stat ic
reference analysis using pro“ ling. In Internat. Symp. on Software Testin g and
Analysis (ISSTA), 2002.

42. T . Lindholm and F. Yellin. The Java virtu al machine speci“ cati on. Addison-
Wesley, second edit ion, 1999.

43. M. Paleczny, C. Vick, and C. Click. The Java HotSpot server compiler. In Java
Virtu al Machine Research and Technology Symp. (JVM), 2001.

44. I. Pechtchanski and V. Sarkar. Dynamic opt imist ic interprocedural analysis: a
framework and an applicat ion. In Obj. -Ori ented Prog., Systems, Lang., and Applic.
(OOPSLA), 2001.

45. F. Qian and L. Hendren. Towards dynamic interprocedural analysis in JVMs. In
Java Virtu al Machine Research and Technology Symp. (JVM), 2004.

46. A. Rountev and S. Chandra. O� -line variable subst itut ion for scaling points-to
analysis. In Prog. Lang. Design and Impl. (PLD I), 2000.

47. A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java using anno-
tated const raints. In Obj. -Ori ented Prog., Systems, Lang., and Applic. (OOPSLA),
2001.

48. E. Ruf. E� ect ive synchronizat ion removal for Java. In Prog. Lang. Design and
Impl. (PLD I), 2000.

122 M. Hirzel, A. Diwan, and M. Hind

49. M. Sagiv, T . Reps, and R. Wilhelm. Paramet ric shape analysis via 3-valued logic.
In Prin ciples of Prog. Lang. (POPL), 1999.

50. M. Shapiro and S. Horwitz. The e� ects of the precision of pointer analysis. In
Stati c Analysis Symp. (SAS), 1997.

51. V. C. Sreedhar, M. Bur ke, and J.-D. Choi. A framework for interprocedural analysis
and opt imizat ion in the presence of dynamic class loading. In Prog. Lang. Design
and Impl. (PLD I), 2000.

52. B. Steensgaard. Points-to analysis in almost linear t ime. In Prin ciples of Prog.
Lang. (POPL), 1996.

53. T . Suganuma, T . Yasue, M. Kawahito, H. Komatsu, and T . Nakatani. A dynamic
opt imizat ion framework for a Java just -in-t ime compiler. In Obj. -Ori ented Prog.,
Systems, Lang., and Applic. (OOPSLA), 2001.

54. V. Sundaresan, L. J. Hendren, C. Raza“ mahefa, V.-R. Raja, P. Lam, E. Gagnon,
and C. Godin. Pract ical virtual method call resolut ion for Java. In Obj. -Ori ented
Prog., Systems, Lang., and Applic. (OOPSLA), 2000.

55. The Apache Tomcat Project . Apache Tomcat .
http://jakarta.apache.org/tomcat .

56. The Eclipse Project . Eclipse. http://www.eclipse.org .
57. F. T ip and J. Palsberg. Scalable propagat ion-based call graph const ruct ion algo-

rithms. In Obj. -Ori ented Prog., Systems, Lang., and Applic. (OOPSLA), 2000.
58. R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan.

Opt imizing Java bytecode using the Soot framework: Is it feasible? In European
Conference for Object-Ori ented Prog. (ECOOP), 2000.

59. F. Vivien and M. Rinard. Incrementalized pointer and escape analysis. In Prog.
Lang. Design and Impl. (PLD I), 2001.

60. J. Whaley and M. Lam. An e� cient inclusion-based points-to analysis for st rict ly-
typed languages. In Stati c Analysis Symp. (SAS), 2002.

