
Pointer Analysis in the Presence of Dynamic

Class Loading�

Martin Hirzel1, Amer Diwan1, and Michael Hind2

1 University of Colorado, Boulder, CO 80309, USA
{hirzel,diwan}@cs.colorado.edu

2 IBM Watson Research Center, Hawthorne, NY 10532, USA
hind@watson.ibm.com

Abstract. Many optimizations need precise pointer analyses to be ef-
fective. Unfortunately, some Java features, such as dynamic class load-
ing, reflection, and native methods, make pointer analyses difficult to
develop. Hence, prior pointer analyses for Java either ignore these fea-
tures or are overly conservative. This paper presents the first non-trivial
pointer analysis that deals with all Java language features. This paper
identifies all problems in performing Andersen’s pointer analysis for the
full Java language, presents solutions to those problems, and uses a full
implementation of the solutions in Jikes RVM for validation and perfor-
mance evaluation. The results from this work should be transferable to
other analyses and to other languages.

1 Introduction

Pointer analysis benefits many optimizations, such as inlining, load elimination,
code movement, stack allocation, and parallelization. Unfortunately, dynamic
class loading, reflection, and native code make ahead-of-time pointer analysis of
Java programs impossible.

This paper presents the first non-trivial pointer analysis that works for all of
Java. Most prior papers assume that all classes are known and available ahead
of time (e.g., [39,40,47,60]). The few papers that deal with dynamic class loading
assume restrictions on reflection and native code [7,36,44,45]. Prior work makes
these simplifying assumptions because they are acceptable in some contexts,
because dealing with the full generality of Java is difficult, and because the
advantages of the analyses often outweigh the disadvantages of only handling a
subset of Java.

This paper describes how to overcome the restrictions of prior work in the
context of Andersen’s pointer analysis [3], so the benefits become available in
the general setting of an executing Java virtual machine. This paper:
� This work is supported by NSF ITR grant CCR-0085792, an NSF Career Award

CCR-0133457, an IBM Ph.D. Fellowship, an IBM faculty partnership award, and an
equipment grant from Intel. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are the authors’ and do not necessarily reflect those
of the sponsors.

M. Odersky (Ed.): ECOOP 2004, LNCS 3086, pp. 96–122, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Pointer Analysis in the Presence of Dynamic Class Loading 97

(a) identifies all problems of performing Andersen’s pointer analysis for the full
Java language,

(b) presents a solution for each of the problems,

(c) reports on a full implementation of the solutions in Jikes RVM, an open-
source research virtual machine from IBM [2],

(d) validates, for our benchmark runs, that the list of problems is complete, the
solutions are correct, and the implementation works, and

(e) evaluates the efficiency of the implementation.

The performance results show that the implementation is efficient enough for
stable long-running applications. However, because Andersen’s algorithm has cu-
bic time complexity, and because Jikes RVM, which is itself written in Java, leads
to a large code base even for small benchmarks, performance needs improvements
for short-running applications. Such improvements are an open challenge; they
could be achieved by making Andersen’s implementation in Jikes RVM more
efficient, or by using a cheaper analysis.

The contributions from this work should be transferable to

– Other analyses: Andersen’s analysis is a whole-program analysis consist-
ing of two steps: modeling the code and computing a fixed-point on the
model. Several other algorithms follow the same pattern, such as VTA [54],
XTA [57], or Das’s one level flow algorithm [15]. Algorithms that do not
require the second step, such as CHA [16,20] or Steensgaard’s unification-
based algorithm [52], are easier to perform in an online setting. Andersen’s
analysis is flow-insensitive and context-insensitive. While this paper should
also be helpful for performing flow-sensitive or context-sensitive analyses
online, these pose additional challenges (multithreading and exceptions, and
multiple calling contexts) that need to be addressed.

– Other languages: This paper shows how to deal with dynamic class loading,
reflection, and native code in Java. Other languages have similar features,
which pose similar problems for pointer analysis.

2 Motivation

Java features such as dynamic class loading, reflection, and native methods pro-
hibit static whole-program analyses. This paper identifies all Java features that
create challenges for pointer analysis; this section focuses just on class loading,
and discusses why it precludes static analysis.

2.1 It Is Not Known Statically Where a Class Will Be Loaded from

Java allows user-defined class loaders, which may have their own rules for where
to look for the bytecode, or even generate it on-the-fly. A static analysis cannot
analyze those classes. User-defined class loaders are widely used in production-
strength commercial applications, such as Eclipse [56] and Tomcat [55].

98 M. Hirzel, A. Diwan, and M. Hind

2.2 It Is Not Known Statically Which Class Will Be Loaded

Even an analysis that restricts itself to the subset of Java without user-
defined class loaders cannot be fully static, because code may still load stati-
cally unknown classes with the system class loader. This is done by invoking
Class.forName(String name), where name can be computed at runtime. For ex-
ample, a program may compute the localized calendar class name by reading
an environment variable. One approach to dealing with this issue would be to
assume that all calendar classes may be loaded. This would result in a less pre-
cise solution, if, for example, at each customer’s site, only one calendar class is
loaded. Even worse, the relevant classes may be available only in the execution
environment, and not in the development environment. Only an online analysis
could analyze such a program.

2.3 It Is Not Known Statically When a Given Class Will Be Loaded

If the classes to be analyzed are available only in the execution environment,
but Class.forName is not used, one could imagine avoiding static analysis by
attempting a whole-program analysis during JVM start-up, long before the an-
alyzed classes will be needed. The Java specification says it should appear to
the user as if class loading is lazy, but a JVM could just pretend to be lazy
by showing only the effects of lazy loading, while actually being eager. This is
difficult to engineer in practice, however. One would need a deferral mechanism
for various visible effects of class loading. An example for such a visible effect
would be a static field initialization of the form

static HashMap hashMap = new HashMap(Constants.CAPACITY);
Suppose that Constants.CAPACITY has the illegal value −1. The effect,

an ExceptionInInitializerError, should only become visible when the class con-
taining the static field is loaded. Furthermore, hashMap should be initialized
after CAPACITY, to ensure that the latter receives the correct value. Loading
classes eagerly and still preserving the proper (lazy) class loading semantics is
challenging.

2.4 It Is Not Known Statically Whether a Given Class Will Be

Loaded

Even if one ignores the order of class loading, and handles only a subset of Java
without explicit class loading, implicit class loading still poses problems for static
analyses. A JVM implicitly loads a class the first time executing code refers to it,
for example, by creating an instance of the class. Whether a program will load a
given class is undecidable, as Figure 1 illustrates: a run of “java Main” does not
load class C; a run of “java Main anArgument” loads class C, because Line 5
creates an instance of C. We can observe this by whether Line 10 in the static
initializer prints its message. In this example, a static analysis would have to
conservatively assume that class C will be loaded, and to analyze it. In general,
a static whole-program analysis would have to analyze many more classes than

Pointer Analysis in the Presence of Dynamic Class Loading 99

necessary, making it inefficient (analyzing more classes costs time and space) and
less precise (the code in those classes may exhibit behavior never encountered
at runtime).

1: class Main {
2: public static void main(String[] argv) {
3: C v = null;
4: if (argv.length > 0)
5: v = new C();
6: }
7: }

8: class C {
9: static {

10: System.out.println("loaded class C");
11: }
12: }

Fig. 1. Class loading example.

3 Related Work

This paper shows how to enhance Andersen’s pointer analysis to analyze the
full Java programming language. Section 3.1 puts Andersen’s pointer analysis in
context. Section 3.2 discusses related work on online, interprocedural analyses.
Section 3.3 discusses related work on using Andersen’s analysis for Java. Finally,
Section 3.4 discusses work related to our validation methodology.

3.1 Static Pointer Analyses

The body of literature on pointer analyses is vast [30]. At one extreme, exem-
plified by Steensgaard [52] and type-based analyses [18,25,57], the analyses are
fast, but imprecise. At the other extreme, exemplified by shape analyses [29,
49], the analyses are slow, but precise enough to discover the shapes of many
data structures. In between these two extremes there are many pointer analyses,
offering different cost-precision tradeoffs.

The goal of our research was to choose a well-known analysis and to extend
it to handle all features of Java. This goal was motivated by our need to build
a pointer analysis to support connectivity-based garbage collection, for which
type-based analyses are too imprecise [32]. Liang et al. [41] report that it would
be very hard to significantly improve the precision of Andersen’s analysis without
biting into the much more expensive shape analysis. This left us with a choice
between Steensgaard’s [52] and Andersen’s [3] analysis. Andersen’s analysis is
less efficient, but more precise [31,50]. We decided to use Andersen’s analysis,
because it poses a superset of the Java-specific challenges posed by Steensgaard’s
analysis, leaving the latter (or points in between) as a fall-back option.

100 M. Hirzel, A. Diwan, and M. Hind

3.2 Online Interprocedural Analyses

An online interprocedural analysis is an interprocedural analysis that occurs
during execution, and thus, can correctly deal with dynamic class loading.

3.2.1 Demand-driven interprocedural analyses. A number of pointer
analyses are demand-driven, but not online [1,9,10,27,38,59]. All of these analyses
build a representation of the static whole program, but then compute exact
solutions only for parts of it, which makes them more scalable. None of these
papers discuss issues specific to dynamic class loading.

3.2.2 Incremental interprocedural analyses. Another related area of re-
search is incremental interprocedural analysis [8,14,23,24]. The goal of this line
of research is to avoid a reanalysis of the complete program when a change is
made after an interprocedural analysis has been performed. This paper differs
in that it focuses on the dynamic semantics of the Java programming language,
not programmer modifications to the source code.

3.2.3 Extant analysis. Sreedhar, Burke, and Choi [51] describe extant anal-
ysis, which finds parts of the static whole program that can be safely optimized
ahead of time, even when new classes may be loaded later. It is not an online
analysis, but reduces the need for one in settings where much of the program is
available statically.

3.2.4 Analyses that deal with dynamic class loading.

Below, we discuss some analyses that deal with dynamic class loading. None
of these analyses deals with reflection or JNI, or validate their analysis results.
Furthermore, all are less precise than Andersen’s analysis.

Pechtchanski and Sarkar [44] present a framework for interprocedural whole-
program analysis and optimistic optimization. They discuss how the analysis is
triggered (when newly loaded methods are compiled), and how to keep track of
what to de-optimize (when optimistic assumptions are invalidated). They also
present an example online interprocedural type analysis. Their analysis does not
model value flow through parameters, which makes it less precise, as well as
easier to implement, than Andersen’s analysis.

Bogda and Singh [7] and King [36] adapt Ruf’s escape analysis [48] to deal
with dynamic class loading. Ruf’s analysis is unification-based, and thus less pre-
cise than Andersen’s analysis. Escape analysis is a simpler problem than pointer
analysis because the impact of a method is independent of its parameters and
the problem doesn’t require a unique representation for each heap object [11].
Bogda and Singh discuss tradeoffs of when to trigger the analysis, and whether
to make optimistic or pessimistic assumptions for optimization. King focuses on
a specific client, a garbage collector with thread-local heaps, where local col-
lections require no synchronization. Whereas Bogda and Singh use a call graph

Pointer Analysis in the Presence of Dynamic Class Loading 101

based on capturing call edges at their first dynamic execution, King uses a call
graph based on rapid type analysis [6].

Qian and Hendren [45], in work concurrently with ours, adapt Tip and Pals-
berg’s XTA [57] to deal with dynamic class loading. The main contribution of
their paper is a low-overhead call edge profiler, which yields a precise call graph
on which XTA is based. Even though XTA is weaker than Andersen’s analy-
sis, both have separate constraint generation and constraint propagation steps,
and thus pose similar problems. Qian and Hendren solve the problems posed
by dynamic class loading similarly to the way we solve them; for example, their
approach to unresolved references is analogous to our approach in Section 4.5.

3.3 Andersen’s Analysis for Static Java

A number of papers describe how to use Andersen’s analysis for Java [39,40,47,
60]. None of these deal with dynamic class loading. Nevertheless, they do present
solutions for various other features of Java that make pointer analyses difficult
(object fields, virtual method invocations, etc.).

Rountev, Milanova, and Ryder [47] formalize Andersen’s analysis for Java us-
ing set constraints, which enables them to solve it with Bane (Berkeley ANalysis
Engine) [19]. Liang, Pennings, and Harrold [40] compare both Steensgaard’s and
Andersen’s analysis for Java, and evaluate trade-offs for handling fields and the
call graph. Whaley and Lam [60] improve the efficiency of Andersen’s analysis
by using implementation techniques from CLA [28], and improve the precision
by adding flow-sensitivity for local variables. Lhoták and Hendren [39] present
Spark (Soot Pointer Analysis Research Kit), an implementation of Andersen’s
analysis in Soot [58], which provides precision and efficiency tradeoffs for various
components.

Prior work on implementing Andersen’s analysis differs in how it repre-
sents constraint graphs. There are many alternatives, and each one has different
cost/benefit tradeoffs. We will discuss these in Section 4.2.1.

3.4 Validation Methodology

Our validation methodology compares points-to sets computed by our analysis to
actual pointers at runtime. This is similar to limit studies that other researchers
have used to evaluate and debug various compiler analyses [18,37,41].

4 Algorithm

Section 4.1 presents the architecture for performing Andersen’s pointer analysis
online. The subsequent sections discuss parts of the architecture that deal with:
constraint finding (4.2), call graph building (4.3), constraint propagation (4.4),
type resolution (4.5), and other constraint generating events (4.6).

102 M. Hirzel, A. Diwan, and M. Hind

4.1 Architecture

As mentioned in Section 1, Andersen’s algorithm has two steps: finding the
constraints that model the code semantics of interest, and propagating these
constraints until a fixed point is reached. In an offline setting, the first step
requires a scan of the program and its call graph. In an online setting, this
step is more complex, because parts of the program are “discovered” during
execution of various VM events. Figure 2 shows the architecture for performing
Andersen’s pointer analysis online. The events during virtual machine execution
(left column) generate inputs to the analysis. The analysis (dotted box) consists
of four components (middle column) that operate on shared data structures
(right column). Clients (bottom) trigger the constraint propagator component of
the analysis, and consume the outputs. The outputs are represented as points-to
sets in the constraint graph. In an online setting, the points-to sets conservatively
describe the pointers in the program until there is an addition to the constraints.

Fig. 2. Architecture for performing Andersen’s pointer analysis online. The numbers
in parentheses refer to sections in this paper.

When used offline, Andersen’s analysis requires only a part of the architecture
in Figure 2. In an offline setting, the only input comes from method compilation.
It is used by the constraint finder and the call graph builder to create a constraint
graph. After that, the constraint propagator finds a fixed-point on the constraint
graph. The results are consumed by clients.

Four additions to the architecture make Andersen’s analysis work online:

Building the call graph online. Andersen’s analysis relies on a call graph
for interprocedural constraints. This paper uses an online version of CHA
(class hierarchy analysis [16,20]) for the call graph builder. CHA is an offline
whole-program analysis, Section 4.3 describes how to make it work online.

Pointer Analysis in the Presence of Dynamic Class Loading 103

Supporting re-propagation. Method compilation and other constraint-
generating events happen throughout the execution. Where an offline anal-
ysis can propagate once after all constraints have been found, the online
analysis has to propagate whenever a client needs points-to information and
new constraints have been created since the last propagation. Section 4.4 de-
scribes how the propagator starts with its previous solution and a worklist of
changed parts in the constraint graph to avoid incurring the full propagation
cost every time.

Supporting unresolved types. The constraint finder may find constraints
that involve as-yet unresolved types. But both the call graph builder and the
propagator rely on resolved types for precision; for example, the propagator
filters points-to sets by types. Section 4.5 describes how the resolution man-
ager defers communicating constraints from the constraint finder to other
analysis components until the involved types are resolved.

Capturing more input events. A pointer analysis for Java has to deal with
features such as reflection and native code, in addition to dynamic class
loading. Section 4.6 describes how to handle all the other events during
virtual machine execution that may generate constraints.

4.2 Constraint Finder

Section 4.2.1 describes the constraint graph data structure, which models the
data flow of the program. Section 4.2.2 describes how code is translated into
constraints at method compilation time. Our approach to representing the con-
straint graph and analyzing code combines ideas from various earlier papers on
offline implementation of Andersen’s analysis.

4.2.1 Constraint graph. The constraint graph has four kinds of nodes that
participate in constraints. The constraints are stored as sets at the nodes. Table 1
describes the nodes, introducing the notation that is used in the remainder of
this paper, and shows which sets are stored at each node. The node kinds in
“[· · ·]” are the kinds of nodes in the set.

Table 1. Constraint graph representation.

Node kind Represents concrete entities Flow sets Points-to sets

h-node Set of heap objects, e.g., all objects allocated
at a particular allocation site

none none

v-node Set of program variables, e.g., a static variable,
or all occurrences of a local variable

flowTo[v],
flowTo[v.f]

pointsTo[h]

h.f -node Instance field f of all heap objects represented
by h

none pointsTo[h]

v.f -node Instance field f of all h-nodes pointed to by v flowFrom[v],
flowTo[v]

none

104 M. Hirzel, A. Diwan, and M. Hind

Flow-to sets (Column 3 of Table 1) represent a flow of values (assignments,
parameter passing, etc.), and are stored with v-nodes and v.f -nodes. For exam-
ple, if v′.f ∈ flowTo(v), then v’s pointer r-value may flow to v′.f . Flow-from sets
are the inverse of flow-to sets. In the example, we would have v ∈ flowFrom(v′.f).

Points-to sets (Column 4 of Table 1) represent the set of objects (r-values)
that a pointer (l-value) may point to, and are stored with v-nodes and h.f -nodes.
Since it stores points-to sets with h.f -nodes instead of v.f -nodes, the analysis is
field sensitive [39].

The constraint finder models program code by v-nodes, v.f -nodes, and their
flow sets. Based on these, the propagator computes the points-to sets of v-nodes
and h.f -nodes. For example, if a client of the pointer analysis is interested in
whether a variable p may point to objects allocated at an allocation site a, it
checks whether the h-node for a is an element of the points-to set of the v-node
for p.

Each h-node has a map from fields f to h.f -nodes (i.e., the nodes that rep-
resent the instance fields of the objects represented by the h-node). In addition
to language-level fields, each h-node has a special node h.ftd that represents the
field containing the reference to the type descriptor for the heap node. A type
descriptor is implemented as an object in Jikes RVM, and thus, must be mod-
eled by the analysis. For each h-node representing arrays of references, there is
a special node h.felems that represents all of their elements. Thus, the analysis
does not distinguish between different elements of an array.

There are many alternatives for storing the flow and points-to sets. For ex-
ample, we represent the data flow between v-nodes and h.f -nodes implicitly,
whereas Bane represents it explicitly [22,47]. Thus, our analysis saves space
compared to Bane, but may have to perform more work at propagation time.
As another example, CLA [28] stores reverse points-to sets at h-nodes, instead of
storing forward points-to sets at v-nodes and h.f -nodes. The forward points-to
sets are implicit in CLA and must therefore be computed after propagation to
obtain the final analysis results. These choices affect both the time and space
complexity of the propagator. As long as it can infer the needed sets during
propagation, an implementation can decide which sets to represent explicitly.
In fact, a representation may even store some sets redundantly: for example, to
obtain efficient propagation, our representation uses redundant flow-from sets.

Finally, there are many choices for how to implement the sets. The Spark

paper evaluates various data structures for representing points-to sets [39], find-
ing that hybrid sets (using lists for small sets, and bit-vectors for large sets) yield
the best results. We found the shared bit-vector implementation from CLA [26]
to be even more efficient than the hybrid sets used by Spark.

4.2.2 Method compilation. The left column of Figure 2 shows the various
events during virtual machine execution that invoke the constraint finder. This
section is only concerned with finding intraprocedural constraints during method
compilation; later sections discuss other kinds of events.

Pointer Analysis in the Presence of Dynamic Class Loading 105

The intraprocedural constraint finder analyzes the code of a method, and
models it in the constraint graph. It is a flow-insensitive pass of the optimizing
compiler of Jikes RVM, operating on the high-level register-based intermediate
representation (HIR). HIR decomposes access paths by introducing temporaries,
so that no access path contains more than one pointer dereference.

Column “Actions” in Table 2 gives the actions of the constraint finder when
it encounters the statement in Column “Statement”. Column “Represent con-
straints” shows the constraints implicit in the actions of the constraint finder
using mathematical notation.

Table 2. Intraprocedural constraint finder.

Statement Actions Represent constraints

v′ = v (move v → v′) flowTo(v).add(v′) pointsTo(v) ⊆ pointsTo(v′)

v′ = v.f (load v.f → v′) flowTo(v.f).add(v′) ∀h ∈ pointsTo(v) :
pointsTo(h.f) ⊆ pointsTo(v′)

v′.f = v (store v → v′.f) flowTo(v).add(v′.f), ∀h ∈ pointsTo(v′) :
flowFrom(v′.f).add(v) pointsTo(v) ⊆ pointsTo(h.f)

�: v = new . . . (alloc h� → v) pointsTo(v).add(h�) {h�} ⊆ pointsTo(v)

In addition to the actions in Table 2, the analysis needs to address some more
issues during method compilation.
4.2.2.1 Unoptimized code. The intraprocedural constraint finder is imple-
mented as a pass of the Jikes RVM optimizing compiler. However, Jikes RVM
compiles some methods only with a baseline compiler, which does not use a
representation that is amenable to constraint finding. We handle such methods
by running the constraint finder as part of a truncated optimizing compilation.
Other virtual machines, where some code is not compiled at all, but interpreted,
can take a similar approach.
4.2.2.2 Recompilation of methods. Many JVMs, including Jikes RVM,
may recompile a method (at a higher optimization level) if it executes frequently.
The recompiled methods may have new variables or code introduced by opti-
mizations (such as inlining). Since each inlining context of an allocation site is
modeled by a separate h-node, the analysis generates new constraints for the
recompiled methods and integrates them with the constraints for any previously
compiled versions of the method.
4.2.2.3 Magic. Jikes RVM has some internal “magic” operations, for example,
to allow direct manipulation of pointers. The compilers expand magic in special
ways directly into low-level code. Likewise, the analysis expands magic in special
ways directly into constraints.

4.3 Call Graph Builder

For each call-edge, the analysis generates constraints that model the data flow
through parameters and return values. Parameter passing is modeled as a move

106 M. Hirzel, A. Diwan, and M. Hind

from actuals (at the call-site) to formals (of the callee). Each return statement
in a method m is modeled as a move to a special v-node vretval(m). The data
flow of the return value to the call-site is modeled as a move to the v-node that
receives the result of the call.

We use CHA (Class Hierarchy Analysis [16,20]) to find call-edges. A more
precise alternative to CHA is to construct the call graph on-the-fly based on the
results of the pointer analysis. We decided against that approach because prior
work indicated that the modest improvement in precision does not justify the
cost in efficiency [39]. In work concurrent with ours, Qian and Hendren developed
an even more precise alternative based on low-overhead profiling [45].

CHA is a static whole-program analysis, but to support Andersen’s analysis
online, CHA must also run online, i.e., deal with dynamic class loading. The
key to solving this problem is the observation that for each call-edge, either
the call-site is compiled first, or the callee is compiled first. The constraints for
the call-edge are added when the second of the two is compiled. This works as
follows:

– When encountering a method m(vformal1(m), . . . , vformaln(m)), the call graph
builder

• creates a tuple Im = 〈vretval(m), vformal1(m), . . . , vformaln(m)〉 for m as a
callee,

• finds all corresponding tuples for matching call-sites that have been com-
piled in the past, and adds constraints to model the moves between the
corresponding v-nodes in the tuples, and

• stores the tuple Im for lookup on behalf of call-sites that will be compiled
in the future.

– When encountering a call-site c : vretval(c) = m(vactual1(c), . . . , vactualn(c)),
the call graph builder

• creates a tuple Ic = 〈vretval(c), vactual1(c), . . . , vactualn(c)〉 for call-site c,
• looks up all corresponding tuples for matching callees that have been

compiled in the past, and adds constraints to model the moves between
the corresponding v-nodes in the tuples, and

• stores the tuple Ic for lookup on behalf of callees that will be compiled
in the future.

Besides parameter passing and return values, there is one more kind of in-
terprocedural data flow that our analysis needs to model: exception handling.
Exceptions lead to flow of values (the exception object) between the site that
throws an exception and the catch clause that catches the exception. For simplic-
ity, our initial prototype assumes that any throws can reach any catch clause;
type filtering eliminates many of these possibilities later on. One could easily
imagine making this more precise, for example by assuming that throws can
only reach catch clauses in the current method or its (transitive) callers.

4.4 Constraint Propagator

The propagator propagates points-to sets following the constraints that are im-
plicit in the flow sets until the points-to sets reach a fixed point. In order to avoid

Pointer Analysis in the Presence of Dynamic Class Loading 107

wasted work, our algorithm maintains two pieces of information, a worklist of
v-nodes and isCharged-bits on h.f -nodes, that enable it to propagate only the
changed points-to sets at each iteration (rather than propagating all points-to
sets). The worklist contains v-nodes whose points-to sets have changed and thus
need to be propagated, or whose flow sets have changed and thus the points-to
sets need to be propagated to additional nodes. The constraint finder initializes
the worklist.

The algorithm in Figure 3, which is a variation of the algorithm from
Spark [39], implements the constraint propagator component of Figure 2.

Fig. 3. Constraint propagator

The propagator puts a v-node on the worklist when its points-to set changes.
Lines 4-10 propagate the v-node’s points-to set to nodes in its flow-to sets. Lines
11-19 update the points-to set for all fields of objects pointed to by the v-node.
This is necessary because for the h-nodes that have been newly added to v’s
points-to set, the flow to and from v.f carries over to the corresponding h.f -
nodes. Line 12 relies on the redundant flow-from sets.

The propagator sets the isCharged-bit of an h.f -node to true when its points-
to set changes. To discharge an h.f -node, the algorithm needs to consider all

108 M. Hirzel, A. Diwan, and M. Hind

flow-to edges from all v.f -nodes that represent it (lines 20-24). This is why it
does not keep a worklist of charged h.f -nodes: to find their flow-to targets, it
needs to iterate over v.f -nodes anyway. This is the only part of the algorithm
that iterates over all (v.f -) nodes: all other parts of the algorithm attempt to
update points-to sets while visiting only nodes that are relevant to the points-to
sets being updated.

To improve the efficiency of this iterative part, the implementation uses a
cache that remembers the charged nodes in shared points-to sets. The cache
speeds up the loops at Lines 20 and 21 by an order of magnitude.

The propagator performs on-the-fly filtering by types: it only adds an h-node
to a points-to set of a v-node or h.f -node if it represents heap objects of a subtype
of the declared type of the variable or field. Lhoták and Hendren found that this
helps keep the points-to sets small, improving both precision and efficiency of
the analysis [39]. Our experiences confirm this observation.

The propagator creates h.f -nodes lazily the first time it adds elements to
their points-to sets, in lines 9 and 14. It only creates h.f -nodes if instances of
the type of h have the field f . This is not always the case, as the following
example illustrates. Let A, B, C be three classes such that C is a subclass of
B, and B is a subclass of A. Class B declares a field f . Let hA, hB , hC be h-
nodes of type A, B, C, respectively. Let v be a v-node of declared type A, and let
v.pointsTo = {hA, hB , hC}. Now, data flow to v.f should add to the points-to
sets of nodes hB .f and hC .f , but there is no node hA.f .

We also experimented with the optimizations partial online cycle elimina-
tion [19] and collapsing of single-entry subgraphs [46]. They yielded only modest
performance improvements compared to shared bit-vectors [26] and type filter-
ing [39]. Part of the reason for the small payoff may be that our data structures
do not put h.f -nodes in flow-to sets (á la Bane [19]).

4.5 Resolution Manager

The JVM specification allows a Java method to have unresolved references to
fields, methods, and classes [42]. A class reference is resolved when the class is
instantiated, when a static field in the class is used, or when a static method in
the class is called.

The unresolved references in the code (some of which may never get resolved)
create two main difficulties for the analysis.

First, the CHA (class hierarchy analysis) that implements the call graph
builder does not work when the class hierarchy of the involved classes is not yet
known. Our current approach to this is to be conservative: if, due to unresolved
classes, CHA cannot yet decide whether a call edge exists, the call graph builder
adds an edge if the signatures match.

Second, the propagator uses types to perform type filtering and also for
deciding which h.f -nodes belong to a given v.f -node. If the involved types are
not yet resolved, this does not work. Therefore, the resolution manager defers
all flow sets and points-to sets involving nodes of unresolved types, thus hiding
them from the propagator:

Pointer Analysis in the Presence of Dynamic Class Loading 109

– When the constraint finder creates an unresolved node, it registers the node
with the resolution manager. A node is unresolved if it refers to an unresolved
type. An h-node refers to the type of its objects; a v-node refers to its declared
type; and a v.f -node refers to the type of v, the type of f , and the type in
which f is declared.

– When the constraint finder would usually add a node to a flow set or points-
to set of another node, but one or both of them are unresolved, it defers
the information for later instead. Table 3 shows the deferred sets stored at
unresolved nodes. For example, if the constraint finder finds that v should
point to h, but v is unresolved, it adds h to v’s deferred pointsTo set. Con-
versely, if h is unresolved, it adds v to h’s deferred pointedToBy set. If both
are unresolved, the points-to information is stored twice.

Table 3. Deferred sets stored at unresolved nodes.

Node kind Flow Points-to

h-node none pointedToBy[v]

v-node flowFrom[v], flowFrom[v.f], flowTo[v], flowTo[v.f] pointsTo[h]

h.f -node there are no unresolved h.f -nodes

v.f -node flowFrom[v], flowTo[v] none

– When a type is resolved, the resolution manager notifies all unresolved nodes
that have registered for it. When an unresolved node is resolved, it iterates
over all deferred sets stored at it, and attempts to add the information to the
real model that is visible to the propagator. If a node stored in a deferred set
is not resolved yet itself, the information will be added in the future when
that node gets resolved.

With this design, some constraints will never be added to the model, if their
types never get resolved. This saves unnecessary propagator work. Qian and
Hendren developed a similar design independently [45].

Before becoming aware of the subtleties of the problems with unresolved
references, we used an overly conservative approach: we added the constraints
eagerly even when we had incomplete information. This imprecision led to very
large points-to sets, which in turn slowed down our analysis prohibitively. Our
current approach is both more precise and more efficient.

4.6 Other Constraint-Generating Events

This section discusses the remaining events in the left column of Figure 2 that
serve as inputs to the constraint finder.

4.6.1 VM building and start-up. Jikes RVM itself is written in Java, and
begins execution by loading a boot image (a file-based image of a fully initialized

110 M. Hirzel, A. Diwan, and M. Hind

VM) of pre-allocated Java objects for the JIT compilers, GC, and other run-
time services. These objects live in the same heap as application objects, so our
analysis must model them.

Our analysis models all the code in the boot image as usual, with the in-
traprocedural constraint finder pass from Section 4.2.2 and the call graph builder
from Section 4.3. Our analysis models the data snapshot of the boot image with
special boot image h-nodes, and with points-to sets of global v-nodes and boot
image h.f -nodes. The program that creates the boot image does not maintain a
mapping from objects in the boot image to their actual allocation site, and thus,
the boot image h-nodes are not allocation sites, instead they are synthesized
at boot image writing time. Finally, the analysis propagates on the combined
constraint system. This models how the snapshot of the data in the boot image
may be manipulated by future execution of the code in the boot image.

Our techniques for correctly handling the boot image can be extended to
form a general hybrid offline/online approach, where parts of the application are
analyzed offline (as the VM is now) and the rest of the application is handled
by the online analysis presented in this work. Such an approach could be useful
for applications where the programmer asserts no use of the dynamic language
features in parts of the application.

4.6.2 Class loading. Even though much of this paper revolves around mak-
ing Andersen’s analysis work for dynamic class loading, most analysis actions
actually happen during other events, such as method compilation or type res-
olution. The only action that does take place exactly at class loading time is
that the constraint finder models the ConstantValue bytecode attribute of static
fields with constraints [42, Section 4.5].

4.6.3 Reflection execution. Java programs can invoke methods, access and
modify fields, and instantiate objects using reflection. Although approaches such
as String analysis [12] could predict which entities are manipulated in special
cases, this problem is undecidable in the general case. Thus, when compiling
code that uses reflection, there is no way of determining which methods will be
called, which fields manipulated, or which classes instantiated at runtime.

One solution is to assume the worst case. We felt that this was too conser-
vative and would introduce significant imprecision into the analysis for the sake
of a few operations that were rarely executed. Other pointer analyses for Java
side-step this problem by requiring users of the analysis to provide hand-coded
models describing the effect of the reflective actions [39,60].

Our solution is to handle reflection when the code is actually executed. We
instrument the virtual machine service that handles reflection with code that
adds constraints dynamically. For example, if reflection stores into a field, the
constraint finder observes the actual source and target of the store and generates
a constraint that captures the semantics of the store at that time.

This strategy for handling reflection introduces new constraints when the
reflective code does something new. Fortunately, that does not happen very

Pointer Analysis in the Presence of Dynamic Class Loading 111

often. When reflection has introduced new constraints and a client needs up-to-
date points-to results, it must trigger a re-propagation.

4.6.4 Native code execution. The Java Native Interface (JNI) allows Java
code to interact with dynamically loaded native code. Usually, a JVM cannot an-
alyze that code. Thus, an analysis does not know (i) what values may be returned
by JNI methods and (ii) how JNI methods may manipulate data structures of
the program.

Our approach is to be imprecise, but conservative, for return values from JNI
methods, while being precise for data manipulation by JNI methods. If a JNI
method returns a heap allocated object, the constraint finder assumes that it
could return an object from any allocation site. This is imprecise, but easy to
implement. The constraint propagation uses type filtering, and thus, will filter
the set of heap nodes returned by a JNI method based on types. If a JNI method
manipulates data structures of the program, the manipulations must go through
the JNI API, which Jikes RVM implements by calling Java methods that use
reflection. Thus, JNI methods that make calls or manipulate object fields are
handled precisely by our mechanism for reflection.

5 Validation

Implementing a pointer analysis for a complicated language and environment
such as Java and Jikes RVM is a difficult task: the pointer analysis has to handle
numerous corner cases, and missing any of the cases results in incorrect points-to
sets. To help us debug our pointer analysis (to a high confidence level) we built
a validation mechanism.

5.1 Validation Mechanism

We validate the pointer analysis results at GC (garbage collection) time. As GC
traverses each pointer, we check whether the points-to set captures the pointer:
(i) When GC finds a static variable p holding a pointer to an object o, our
validation code finds the nodes v for p and h for o. Then, it checks whether the
points-to set of v includes h. (ii) When GC finds a field f of an object o holding
a pointer to an object o′, our validation code finds the nodes h for o and h′ for o′.
Then, it checks whether the points-to set of h.f includes h′. If either check fails,
it prints a warning message.

To make the points-to sets correct at GC time, we propagate the constraints
(Section 4.4) just before GC starts. As there is no memory available to grow
points-to sets at that time, we modified Jikes RVM’s garbage collector to set
aside some extra space for this purpose.

Our validation methodology relies on the ability to map concrete heap objects
to h-nodes in the constraint graph. To facilitate this, we add an extra header word
to each heap object that maps it to its corresponding h-node in the constraint
graph. For h-nodes representing allocation sites, we install this header word at

112 M. Hirzel, A. Diwan, and M. Hind

allocation time. This extra word is only used for validation runs; the pointer
analysis does not require any change to the object header.

5.2 Validation Anecdotes

Our validation methodology helped us find many bugs, some of which were quite
subtle. Below are two examples. In both cases, there was more than one way in
which bytecode could represent a Java-level construct. Both times, our analysis
dealt correctly with the more common case, and the other case was obscure,
yet legal. Our validation methodology showed us where we missed something;
without it, we might not even have suspected that something was wrong.

5.2.1 Field reference class. In Java bytecode, a field reference consists of the
name and type of the field, as well as a class reference to the class or interface
“in which the field is to be found” ([42, Section 5.1]). Even for a static field,
this may not be the class that declared the field, but a subclass of that class.
Originally, we had assumed that it must be the exact class that declared the
static field, and had written our analysis accordingly to maintain separate v-
nodes for static fields with distinct declaring classes. When the bytecode wrote
to a field using a field reference that mentions the subclass, the v-node for the
field that mentions the superclass was missing some points-to set elements. That
resulted in warnings from our validation methodology. Upon investigating those
warnings, we became aware of the incorrect assumption and fixed it.

5.2.2 Field initializer attribute. In Java source code, a static field declara-
tion has an optional initialization, for example, “final static String s = "abc";”.
In Java bytecode, this usually translates into initialization code in the class ini-
tializer method <clinit>() of the class that declares the field. But sometimes, it
translates into a ConstantValue attribute of the field instead ([42, Section 4.5]).
Originally, we had assumed that class initializers are the only mechanism for
initializing static fields, and that we would find these constraints when running
the constraint finder on the <clinit>() method. But our validation methodology
warned us about v-nodes for static fields whose points-to sets were too small.
Knowing exactly for which fields that happened, we looked at the bytecode,
and were surprised to see that the <clinit>() methods didn’t initialize the fields.
Thus, we found out about the ConstantValue bytecode attribute, and added con-
straints when class loading parses and executes that attribute (Section 4.6.2).

6 Clients

This section investigates two example clients of our analysis, and how they can
deal with the dynamic nature of our analysis.

Method inlining can benefit from pointer analysis: if the points-to set ele-
ments of v all have the same implementation of a method m, the call v.m() has

Pointer Analysis in the Presence of Dynamic Class Loading 113

only one possible target. Modern JVMs [4,13,43,53] typically use a dual execution
strategy, where each method is initially either interpreted or compiled without
optimizations. No inlining is performed for such methods. Later, an optimizing
compiler that may perform inlining recompiles the minority of frequently execut-
ing methods. Because inlining is not performed during the initial execution, our
analysis does not need to propagate constraints until the optimizing compiler
needs to make an inlining decision.

Since the results of our pointer analysis may be invalidated by any of the
events in the left column of Figure 2, an inlining client must be prepared to
invalidate inlining decisions. Techniques such as code patching [13] and on-stack
replacement [21,34] support invalidation. If instant invalidation is needed, our
analysis must repropagate every time it finds new constraints. There are also
techniques for avoiding invalidation of inlining decisions, such as pre-existence
based inlining [17] and guards [5,35], that would allow our analysis to be lazy
about repropagating after it finds new constraints.

CBGC (connectivity-based garbage collection) is a new garbage collection
technique that requires pointer analysis [32]. CBGC uses pointer analysis results
to partition heap objects such that connected objects are in the same partition,
and the pointer analysis can guarantee the absence of certain cross-partition
pointers. CBGC exploits the observation that connected objects tend to die
together [33], and certain subsets of partitions can be collected while completely
ignoring the rest of the heap.

CBGC must know the partition of an object at allocation time. However,
CBGC can easily combine partitions later if the pointer analysis finds that they
are strongly connected by pointers. Thus, there is no need to perform a full prop-
agation at object allocation time. However, CBGC does need full conservative
points-to information when performing a garbage collection; thus, CBGC needs
to request a full propagation before collecting. Between collections, CBGC does
not need conservative points-to information.

7 Performance

This section evaluates the efficiency of our pointer analysis implementation in
Jikes RVM 2.2.1. Prior work (e.g., [39]) has evaluated the precision of Andersen’s
analysis. In addition to the analysis itself, our modified version of Jikes RVM
includes the validation mechanism from Section 5. Besides the analysis and vali-
dation code, we also added a number of profilers and tracers to collect the results
presented in this section. For example, at each yield-point (method prologue or
loop back-edge), a stack walk determines whether the yield-point belongs to
analysis or application code, and counts it accordingly. We performed all ex-
periments on a 2.4GHz Pentium 4 with 2GB of memory running Linux, kernel
version 2.4.

Since Andersen’s analysis has cubic time complexity and quadratic space
complexity (in the size of the code), optimizations that increase the size of the
code can dramatically increase the constraint propagation time. In our experi-

114 M. Hirzel, A. Diwan, and M. Hind

ence, aggressive inlining can increase constraint propagation time by up to a fac-
tor of 5 for our benchmarks. In default mode, Jikes RVM performs inlining (and
optimizations) only inside the hot application methods, but is more aggressive
about methods in the boot image. We force Jikes RVM to be more cautious about
inlining inside boot image methods by using a FastAdaptiveMarkSweep image
and disabling inlining at build time. During benchmark execution, Jikes RVM
does, however, perform inlining for hot boot image methods when recompiling
them.

7.1 Benchmark Characteristics

Table 4 describes our benchmark suite; null is a dummy benchmark with an
empty main method. Column “Analyzed methods” gives the number of methods
analyzed. We analyze a method when it is part of the boot image, or when
the program executes it for the first time. The analyzed methods include the
benchmark’s methods, library methods called by the benchmark, and methods
belonging to Jikes RVM itself. The null benchmark provides a baseline: its data
represents approximately the amount that Jikes RVM adds to the size of the
application. This data is approximate because, for example, some of the methods
called by the optimizing compiler may also be used by the application (e.g.,
methods on container classes). Column “Loaded classes” gives the number of
classes loaded by the benchmarks. Once again, the number of loaded classes for
the null benchmark provides a baseline. Finally, Column “Run time” gives the
run time for our benchmarks using our configuration of the Jikes RVM.

Table 4. Benchmark programs.

Program Command line arguments Analyzed methods Loaded classes Run time

null none 15,598 1,363 1s

javalex qb1.lex 15,728 1,389 37s

compress -m1 -M1 -s100 15,728 1,391 14s

db -m1 -M1 -s100 15,746 1,385 28s

mtrt -m1 -M1 -s100 15,858 1,404 14s

mpegaudio -m1 -M1 -s100 15,899 1,429 27s

jack -m1 -M1 -s100 15,962 1,434 21s

richards none 15,963 1,440 4s

hsql -clients 1 -tpc 50000 15,992 1,424 424s

jess -m1 -M1 -s100 16,158 1,527 29s

javac -m1 -M1 -s100 16,464 1,526 66s

xalan 1 1 17,057 1,716 10s

The Jikes RVM methods and classes account for a significant portion of the
code in our benchmarks. Thus, our analysis has to deal with much more code
than it would have to in a JVM that is not written in Java. On the other hand,
writing the analysis itself in Java had significant software engineering benefits;

Pointer Analysis in the Presence of Dynamic Class Loading 115

 15,500

 15,550

 15,600

 15,650

 15,700

 15,750

 15,800

 15,850

 15,900

 0 5 10 15 20 25 30 35

an
al

yz
ed

 m
et

ho
ds

yield points (in millions)

Fig. 4. Yield-points versus analyzed methods for mpegaudio. The first shown data
point is the main() method.

for example, the analysis relies on garbage collection for its data structures. In
addition, the absence of artifical boundaries between the analysis, other parts
of the runtime system, and the application exposes more opportunities for op-
timizations. Current trends show that the benefits of writing system code in a
high-level, managed, language are gaining wider recognition. For example, Mi-
crosoft is pushing towards implementing more of Windows in managed code.

Figure 4 shows how the number of analyzed method increase over a run of
mpegaudio. The x-axis represents time measured by the number of thread yield-
points encountered in a run. There is a thread yield-point in the prologue of every
method and in every loop. We ignore yield-points that occur in our analysis code
(this would be hard to do if we used real time for the x-axis). The y-axis starts
at 15,500: all methods analyzed before the first method in this graph are in the
boot image and are thus analyzed once for all benchmarks. The graphs for other
benchmarks have a similar shape, and therefore we omit them.

From Figure 4, we see that there are two significant stages (around the 10 and
25 million yield-point marks) when the application is executing only methods
that it has encountered before. At other times, the application encounters new
methods as it executes. We expect that for longer running benchmarks (e.g., a
webserver that runs for days), the number of analyzed methods stabilizes after
a few minutes of run time. That point may be an ideal time to propagate the
constraints and use the results to perform optimizations.

116 M. Hirzel, A. Diwan, and M. Hind

7.2 Analysis Cost

Our analysis has two main costs: constraint finding and constraint propagation.
Constraint finding happens whenever we analyze a new method, load a new class,
etc. Constraint propagation happens whenever a client of the pointer analysis
needs points-to information. We define eager propagation to be propagation after
every event from the left column of Figure 2, if it generated new constraints. We
define lazy propagation to be propagation that occurs just once at the end of
the program execution.

7.2.1 Cost in space. Table 5 shows the total allocation for our benchmark
runs. Column “No analysis” gives the number of megabytes allocated by the
program without our analysis. Column “No propagation” gives the allocation
when the analysis generates, but does not propagate, constraints. Thus, this
column gives the space overhead of just representing the constraints. Columns
“Eager”, “Lazy”, and “At GC” give the allocation when using eager, lazy, and
at GC propagation. The difference between these and the “No propagation”
column represents the overhead of representing the points-to sets. Sometimes we
see that doing more work actually reduces the amount of total allocation (e.g.,
mpegaudio allocates more without any analysis than with lazy propagation).
This phenomenon occurs because our analysis is interleaved with the execution
of the benchmark program, and thus the Jikes RVM adaptive optimizer optimizes
different methods with our analysis than without our analysis.

Table 5. Total allocation (in megabytes)

Benchmark Eager At GC Lazy No propagation No analysis

null 48.5 48.1 48.8 13.5 9.7

javalex 621.7 104.7 110.6 70.0 111.8

compress 416.2 230.0 167.0 129.3 130.2

db 394.4 213.8 151.0 112.7 113.6

mtrt 721.9 303.8 240.5 201.5 172.9

mpegaudio 755.9 145.8 83.1 42.8 137.0

jack 1,782.4 418.4 354.8 309.2 322.8

richards 1,117.8 61.3 67.7 26.6 12.6

hsql 4,047.0 3,409.6 3,343.8 3,291.1 3,444.6

jess 4,694.8 458.0 394.4 341.4 398.3

javac 2,023.0 450.4 381.3 328.2 429.3

xalan 6,074.9 166.4 200.4 131.5 37.6

Finally, since the boot image needs to include constraints for the code and
data in the boot image, our analysis inflates the boot image size from 31.5
megabytes to 73.4 megabytes.

Pointer Analysis in the Presence of Dynamic Class Loading 117

Table 6. Percent of execution time in constraint finding

Program Analyzing methods Resolving classes and arrays

null 69.16% 3.68%

javalex 2.02% 0.39%

compress 5.00% 1.22%

db 1.77% 0.39%

mtrt 7.68% 1.70%

mpegaudio 6.23% 6.04%

jack 6.13% 2.10%

richards 21.98% 5.88%

hsql 0.29% 0.09%

jess 5.59% 1.24%

javac 3.20% 1.60%

xalan 26.32% 8.66%

7.2.2 Cost of constraint finding. Table 6 gives the percentage of overall ex-
ecution time spent in generating constraints from methods (Column “Analyzing
methods”) and from resolution events (Column “Resolving classes and arrays”).
For these executions we did not run any propagations. Table 6 shows that gen-
erating constraints for methods is the dominant part of constraint generation.
Also, as the benchmark run time increases, the percentage of time spent in con-
straint generation decreases. For example, the time spent in constraint finding is
a negligible percentage of the run time for our longest running benchmark, hsql.

7.2.3 Cost of propagation. Table 7 shows the cost of propagation. Columns
“Count” give the number of propagations that occur in our benchmark runs.
Columns “Time” give the arithmetic mean ± standard deviation of the time (in
seconds) it takes to perform each propagation. We included the lazy propagation
data to give an approximate sense for how long the propagation would take if
we were to use a static pointer analysis. Recall, however, that these numbers
are still not comparable to static analysis numbers of these benchmarks in prior
work, since, unlike them, we also analyze the Jikes RVM compiler and other
system services.

Table 7 shows that the mean pause time due to eager propagation varies
between 3.8 and 16.8 seconds for the real benchmarks. In contrast, a full (lazy)
propagation is much slower. Thus, our algorithm is effective in avoiding work on
parts of the program that have not changed since the last propagation.

Our results (omitted for space considerations) showed that the propagation
cost did not depend on which of the events in the left column of Figure 2 gen-
erated new constraints that were the reason for the propagation.

Figure 5 presents the spread of propagation times for javac. A point (x,y) in
this graph says that propagation “x” took “y” seconds. Out of 1,107 propagations
in javac, 524 propagations take under 1 second. The remaining propagations are
much more expensive (10 seconds or more), thus increasing the average. We

118 M. Hirzel, A. Diwan, and M. Hind

Table 7. Propagation statistics (times in seconds)

Eager At GC Lazy
Program Count Time Count Time Count Time

null 1 135.6±0.0 1 120.7±0.0 1 137.8±0

javalex 166 13.6±22.0 1 120.7±0.0 1 158.4±0

compress 127 8.6±18.7 3 104.7±23.6 1 142.8±0

db 140 10.0±20.2 3 106.1±24.8 1 144.5±0

mtrt 262 5.5±14.4 3 106.8±24.7 1 148.0±0

mpegaudio 317 5.5±13.4 3 105.4±24.1 1 144.3±0

jack 392 10.9±17.8 3 114.4±33.8 1 161.8±0

richards 410 3.8±10.9 1 120.8±0.0 1 134.8±0

hsql 391 10.1±20.6 6 76.6±94.8 1 426.7±0

jess 734 16.8±20.5 3 117.7±38.5 1 182.4±0

javac 1,103 12.5±22.9 5 114.3±97.6 1 386.7±0

xalan 1,726 11.2±21.4 1 120.5±0.0 1 464.6±0

also discern that more expensive propagations occur later in the execution. The
omitted graphs for other benchmarks have a similar shape. Although we present
the data for eager propagation, clients of our analysis do not necessarily require
eager propagation (Section 6).

As expected, the columns for propagation at GC in Table 7 show that if
we propagate less frequently, the individual propagations are more expensive;
they are still on average cheaper than performing a single full propagation at
the end of the program run. Recall that, for Java programs, performing a static
analysis of the entire program is not possible because what constitutes the “entire
program” is not known until it executes to completion.

7.3 Understanding the Costs of Our Constraint Propagation

The speed of our constraint propagator (a few seconds to update points-to infor-
mation) may be adequate for long-running clients, but may not be feasible for
short-running clients. For example, a web server that does not touch new meth-
ods after a few minutes of running can benefit from our current analysis: once
the web server stops touching new methods, the propagation time of our anal-
ysis goes down to zero. Since we did not have a server application in our suite,
we confirmed this behavior by running two benchmarks (javac and mpegaudio)
multiple times in a loop: after the first run, there was little to no overhead from
constraint finding or constraint propagation (well under 1%). On the other hand,
an application that only runs for a few minutes may find our analysis to be pro-
hibitively slow. On profiling our analysis, we found that the worklist part (lines
2 to 19 in Figure 3) takes up far more of the propagation time than the iterative
part (lines 20 to 26 in Figure 3). Thus, in our future work, we will first focus on
the worklist part to improve propagator performance.

Pointer Analysis in the Presence of Dynamic Class Loading 119

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

tim
e

(in
 s

ec
on

ds
)

number of propagations

Fig. 5. Propagation times for javac (eager).

8 Conclusions

We describe and evaluate the first non-trivial pointer analysis that handles all of
Java. Java features such as dynamic class loading, reflection, and native methods
introduce many challenges for pointer analyses. Some of these prohibit the use
of static pointer analyses. We validate the output of our analysis against actual
pointers created during program runs. We evaluate our analysis by measuring
many aspects of its performance, including the amount of work our analysis must
do at run time. Our results show that our analysis is feasible and fast enough
for server applications.

References

1. G. Agrawal, J. Li, and Q. Su. Evaluating a demand driven technique for call graph
construction. In Internat. Conference on Compiler Construction (CC), 2002.

2. B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño virtual
machine. IBM Systems Journal, 39(1), 2000.

3. L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, University of Copenhagen, 1994. DIKU report 94/19.

4. M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive optimiza-
tion in the Jalapeño JVM. In Obj.-Oriented Prog., Systems, Lang., and Applic.
(OOPSLA), 2000.

120 M. Hirzel, A. Diwan, and M. Hind

5. M. Arnold and B. G. Ryder. Thin guards: A simple and effective technique for
reducing the penalty of dynamic class loading. In European Conference for Object-
Oriented Prog. (ECOOP), 2002.

6. D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function calls.
In Obj.-Oriented Prog., Systems, Lang., and Applic. (OOPSLA), 1996.

7. J. Bogda and A. Singh. Can a shape analysis work at run-time? In Java Virtual
Machine Research and Technology Symp. (JVM), 2001.

8. M. Burke and L. Torczon. Interprocedural optimization: Eliminating unnecessary
recompilation. Trans. on Prog. Lang. and Systems (TOPLAS), 1993.

9. R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant context inference. In
Principles of Prog. Lang. (POPL), 1999.

10. B.-C. Cheng and W.-m. W. Hwu. Modular interprocedural pointer analysis using
access paths: design, implementation, and evaluation. In Prog. Lang. Design and
Impl. (PLDI), 2000.

11. J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape analysis
for Java. In Obj.-Oriented Prog., Systems, Lang., and Applic. (OOPSLA), 1999.

12. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string
expressions. In Static Analysis Symposium (SAS), 2003.

13. M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practicing JUDO: Java under
dynamic optimizations. In Prog. Lang. Design and Impl. (PLDI), 2000.

14. K. D. Cooper, K. Kennedy, and L. Torczon. Interprocedural optimization: Elimi-
nating unnecessary recompilation. Trans. on Prog. Lang. and Systems (TOPLAS),
1986.

15. M. Das. Unification-based pointer analysis with directional assignments. In Prog.
Lang. Design and Impl. (PLDI), 2000.

16. J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In European Conference for Object-Oriented
Prog. (ECOOP), 1995.

17. D. Detlefs and O. Agesen. Inlining of virtual methods. In European Conference
for Object-Oriented Prog. (ECOOP), 1999.

18. A. Diwan, K. S. McKinley, and J. E. B. Moss. Using types to analyze and optimize
object-oriented programs. Trans. on Prog. Lang. and Systems (TOPLAS), 2001.

19. M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial online cycle elimination
in inclusion constraint graphs. In Prog. Lang. Design and Impl. (PLDI), 1998.

20. M. F. Fernandez. Simple and effective link-time optimization of Modula-3 pro-
grams. In Prog. Lang. Design and Impl. (PLDI), 1995.

21. S. J. Fink and F. Qian. Design, implementation, and evaluation of adaptive re-
compilation with on-stack replacement. In Code Gen. and Optimization (CGO),
2003.

22. J. S. Foster, M. Fähndrich, and A. Aiken. Flow-insensitive points-to analysis with
term and set constraints. Technical report, University of California at Berkeley,
1997.

23. D. P. Grove. Effective Interprocedural Optimization of Object-Oriented Languages.
PhD thesis, University of Washington, 1998.

24. M. W. Hall, J. M. Mellor-Crummey, A. Carle, and R. G. Rodriguez. Fiat: A frame-
work for interprocedural analysis and transformations. In Workshop on Languages
and Compilers for Parallel Computing (LCPC), 1993.

25. T. Harris. Early storage reclamation in a tracing garbage collector. ACM SIG-
PLAN Notices, 1999.

26. N. Heintze. Analysis of large code bases: The compile-link-analyze model.
http://cm.bell-labs.com/cm/cs/who/nch/cla.ps, 1999.

Pointer Analysis in the Presence of Dynamic Class Loading 121

27. N. Heintze and O. Tardieu. Demand-driven pointer analysis. In Prog. Lang. Design
and Impl. (PLDI), 2001.

28. N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA: A million lines
of C code in a second. In Prog. Lang. Design and Impl. (PLDI), 2001.

29. L. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis,
Cornell University, 1990.

30. M. Hind. Pointer analysis: Haven’t we solved this problem yet? In Workshop on
Program Analysis for Software Tools and Engineering (PASTE), 2001.

31. M. Hind and A. Pioli. Which pointer analysis should I use? In Internat. Symp. on
Software Testing and Analysis (ISSTA), 2000.

32. M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based garbage collection. In
Obj.-Oriented Prog., Systems, Lang., and Applic. (OOPSLA), 2003.

33. M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding the connectivity of
heap objects. In Internat. Symp. on Memory Management (ISMM), 2002.

34. U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with dynamic
deoptimization. In Prog. Lang. Design and Impl. (PLDI), 1992.

35. U. Hölzle and D. Ungar. Optimizing dynamically-dispatched calls with run-time
type feedback. In Prog. Lang. Design and Impl. (PLDI), 1994.

36. A. C. King. Removing GC synchronization (extended version).
http://www.acm.org/src/subpages/AndyKing/overview.html, 2003. Winner
(Graduate Division) ACM Student Research Competition.

37. J. R. Larus and S. Chandra. Using tracing and dynamic slicing to tune compilers.
University of Wisconsin Technical Report 1174, Aug. 1993.

38. C. Lattner and V. Adve. Data Structure Analysis: An Efficient Context-Sensitive
Heap Analysis. Tech. Report UIUCDCS-R-2003-2340, Computer Science Dept.,
Univ. of Illinois at Urbana-Champaign, Apr 2003.

39. O. Lhoták and L. Hendren. Scaling Java points-to analysis using SPARK. In
Internat. Conference on Compiler Construction (CC), 2003.

40. D. Liang, M. Pennings, and M. J. Harrold. Extending and evaluating flow-
insenstitive and context-insensitive points-to analyses for Java. In Workshop on
Program Analysis for Software Tools and Engineering (PASTE), 2001.

41. D. Liang, M. Pennings, and M. J. Harrold. Evaluating the precision of static
reference analysis using profiling. In Internat. Symp. on Software Testing and
Analysis (ISSTA), 2002.

42. T. Lindholm and F. Yellin. The Java virtual machine specification. Addison-
Wesley, second edition, 1999.

43. M. Paleczny, C. Vick, and C. Click. The Java HotSpot server compiler. In Java
Virtual Machine Research and Technology Symp. (JVM), 2001.

44. I. Pechtchanski and V. Sarkar. Dynamic optimistic interprocedural analysis: a
framework and an application. In Obj.-Oriented Prog., Systems, Lang., and Applic.
(OOPSLA), 2001.

45. F. Qian and L. Hendren. Towards dynamic interprocedural analysis in JVMs. In
Java Virtual Machine Research and Technology Symp. (JVM), 2004.

46. A. Rountev and S. Chandra. Off-line variable substitution for scaling points-to
analysis. In Prog. Lang. Design and Impl. (PLDI), 2000.

47. A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java using anno-
tated constraints. In Obj.-Oriented Prog., Systems, Lang., and Applic. (OOPSLA),
2001.

48. E. Ruf. Effective synchronization removal for Java. In Prog. Lang. Design and
Impl. (PLDI), 2000.

122 M. Hirzel, A. Diwan, and M. Hind

49. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In Principles of Prog. Lang. (POPL), 1999.

50. M. Shapiro and S. Horwitz. The effects of the precision of pointer analysis. In
Static Analysis Symp. (SAS), 1997.

51. V. C. Sreedhar, M. Burke, and J.-D. Choi. A framework for interprocedural analysis
and optimization in the presence of dynamic class loading. In Prog. Lang. Design
and Impl. (PLDI), 2000.

52. B. Steensgaard. Points-to analysis in almost linear time. In Principles of Prog.
Lang. (POPL), 1996.

53. T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T. Nakatani. A dynamic
optimization framework for a Java just-in-time compiler. In Obj.-Oriented Prog.,
Systems, Lang., and Applic. (OOPSLA), 2001.

54. V. Sundaresan, L. J. Hendren, C. Razafimahefa, V.-R. Raja, P. Lam, E. Gagnon,
and C. Godin. Practical virtual method call resolution for Java. In Obj.-Oriented
Prog., Systems, Lang., and Applic. (OOPSLA), 2000.

55. The Apache Tomcat Project. Apache Tomcat.
http://jakarta.apache.org/tomcat.

56. The Eclipse Project. Eclipse. http://www.eclipse.org.
57. F. Tip and J. Palsberg. Scalable propagation-based call graph construction algo-

rithms. In Obj.-Oriented Prog., Systems, Lang., and Applic. (OOPSLA), 2000.
58. R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan.

Optimizing Java bytecode using the Soot framework: Is it feasible? In European
Conference for Object-Oriented Prog. (ECOOP), 2000.

59. F. Vivien and M. Rinard. Incrementalized pointer and escape analysis. In Prog.
Lang. Design and Impl. (PLDI), 2001.

60. J. Whaley and M. Lam. An efficient inclusion-based points-to analysis for strictly-
typed languages. In Static Analysis Symp. (SAS), 2002.

