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What is Liveness?

…

Tree *ast = parse();
Cfg *cfg = translate(ast);

〈 code that does not use the value
of ast 〉

…

ast

• A variable is live if its value will be used in the future.
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Accuracy and Reachability
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The Questions

• Can liveness accuracy benefit reachability 
traversals?
– Useful for garbage collection?
– Useful for leak detection?

• What kind of analysis is necessary?
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Motivation
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Results in a Nutshell
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Outline

• Related work
• Summary

Conclusion

• Reachable heap given various 
accuracy schemes

Results
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• Metrics
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Liveness Approaches

• Static analysis
– Compiler-analysis of source code
– Disadvantage: difficult, cost + benefits unclear

• Dynamic analysis
– Trace-based analysis
– Disadvantage: two runs needed, limit study
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Infrastructure for Experiments
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Generating the Trace

x = malloc(4*N);
note_allocation();
note_assign(&x);
i = 0;
note_assign(&i);
while(i < N){

y = x + 4*i;
note_assign(&y,&x,&i);
*y = i;
note_use(&y);
note_assign(y,&i);
i++;
note_assign(&i,&i);

}

x = malloc(4*N);

i = 0;

while(i < N){
y = x + 4*i;

*y = i;

i++;

}

Original Code Instrumented Code Trace

…
allocation(91)
assign(x)
assign(i)
assign(y, x, i)
use(y)
assign(91.0, i)
assign(i, i)
assign(y, x, i)
use(y)
assign(91.4, i)
…
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Analyzing the Trace

…
allocation(91)
assign(x)
assign(i)
assign(y, x, i)
use(y)
assign(91.0, i)
assign(i, i)
assign(y, x, i)
use(y)
assign(91.4, i)
…

Trace Simulated Liveness State
x y i

Resulting Information

T1: {x, i}

T2: {}

T1: {x, i}

“A variable is live if its value will be used in the future.”
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Usefulness Metric for Accuracy

Conservative

Bytes
reachable

Time

Accurate

Reachability traversal:     1                     2                   3
Reachability reduction:  10%               20%                0%

� The accurate scheme reduced reachability by 10% on average.
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Benchmarks

Spec959 030 8727 597Cli

Spec95

GNU

Austin

Austin

Austin

Austin

Austin

Bezault

Hillion

Durian

Hirzel

Bartlett

Bartlett

Author/Source

148 664

14 180

12 382 400

41 380

166 832

7 920

259 512

106 392

109 548

222 300

28 700

1 123 180

2 200 004

Total allocation [Bytes]Language Lines of CodeName

31 211

8 163

7 308

3 979

2 156

782

647

17 185

3 137

927

350

196

85

Cijpeg

Cgzip

Cbc

Cyacr2

Cft

Cks

Canagram

Programs with explicit deallocation:

Eiffelgegrep

Eiffelebignum

Eiffelerbt

Eiffelbshift

Cgctest

Cgctest3

Programs written with GC in mind:
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Usefulness of Liveness
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Usefulness of Liveness
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Different Levels of Liveness
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Type versus Liveness Accuracy
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Validation

• Comparing liveness information found in 
different runs
– For how many locations did the obtained 

liveness information differ?
GlobalStackBenchmark

2.2

0.0

0.0

% different

1.3

2.7

0.7

% different

gzip

yacr2

gegrep
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Related Work

• Evaluating Accuracy
– Hirzel, Diwan: On the type accuracy of garbage 

collection. ISMM 2000.
– Shaham, Kolodner, Sagiv: On the effectiveness 

of GC in Java. ISMM 2000.
• Implementing Accuracy

– [Bartlett1988] [DiwanMossHudson1992] 
[SmithMorrisett1998] [Zorn1993] 
[AgesenDetlefsMoss1998] …
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Summary

• Liveness accuracy can be very useful for 
reachability traversals.

• Strong analyses are necessary to reach 
significantly fewer Bytes.

• Type accuracy was not very useful in these 
experiments.


