
1

On the Usefulness of Liveness
for Garbage Collection

and Leak Detection
Martin Hirzel, Amer Diwan, and Antony Hosking
{hirzel,diwan}@cs.colorado.edu hosking@cs.purdue.edu

ECOOP June 2001 Budapest, Hungary

2

What is Liveness?

…

Tree *ast = parse();
Cfg *cfg = translate(ast);

〈 code that does not use the value
of ast 〉

…

ast

• A variable is live if its value will be used in the future.

3

Accuracy and Reachability
p

x

A B

C

D E

ast

Unreachable

4

Accuracy and Reachability
p

x

A B

C

D E

ast [not live]

• Type accuracy:
which variables hold pointers?

• Liveness accuracy:
which variables are live?

Unreachable

5

Accuracy and Reachability
p

x [not a pointer]

A B

C

D E

ast

• Type accuracy:
which variables hold pointers?

Unreachable

6

Accuracy and Reachability
p

x [not a pointer]

A B

C

D E

ast [not live]

• Type accuracy:
which variables hold pointers?

• Liveness accuracy:
which variables are live?

Unreachable

7

The Questions

• Can liveness accuracy benefit reachability
traversals?
– Useful for garbage collection?
– Useful for leak detection?

• What kind of analysis is necessary?

8

Motivation

conservative partial full

none

weak

strong

Type
Accuracy

Liveness
Accuracy

investigated in literature
unexplored

9

Results in a Nutshell

conservative partial full

none

weak

strong

Type
Accuracy

Liveness
Accuracy

investigated in literature
unexplored

10

Outline

• Related work
• Summary

Conclusion

• Reachable heap given various
accuracy schemes

Results

• Obtaining liveness information
• Metrics

Methodology

• Motivation
• Preview of results

Introduction

11

Liveness Approaches

• Static analysis
– Compiler-analysis of source code
– Disadvantage: difficult, cost + benefits unclear

• Dynamic analysis
– Trace-based analysis
– Disadvantage: two runs needed, limit study

12

Infrastructure for Experiments

C or Eiffel
program

Instrument

Analysis
library

Link Run-1 Liveness
analysis

Link Run-2

Trace

Stubs +
BDW gc

Type Information

Liveness Information

Accuracy
selection

13

Infrastructure for Experiments

C or Eiffel
program

Instrument

Type-analysis
library

Link Run-1 Liveness
analysis

Link Run-2

Trace

Stubs +
BDW gc

Type Information

Liveness Information

Accuracy
selection

14

Generating the Trace

x = malloc(4*N);
note_allocation();
note_assign(&x);
i = 0;
note_assign(&i);
while(i < N){

y = x + 4*i;
note_assign(&y,&x,&i);
*y = i;
note_use(&y);
note_assign(y,&i);
i++;
note_assign(&i,&i);

}

x = malloc(4*N);

i = 0;

while(i < N){
y = x + 4*i;

*y = i;

i++;

}

Original Code Instrumented Code Trace

…
allocation(91)
assign(x)
assign(i)
assign(y, x, i)
use(y)
assign(91.0, i)
assign(i, i)
assign(y, x, i)
use(y)
assign(91.4, i)
…

15

Analyzing the Trace

…
allocation(91)
assign(x)
assign(i)
assign(y, x, i)
use(y)
assign(91.0, i)
assign(i, i)
assign(y, x, i)
use(y)
assign(91.4, i)
…

Trace Simulated Liveness State
x y i

Resulting Information

T1: {x, i}

T2: {}

T1: {x, i}

“A variable is live if its value will be used in the future.”

16

Usefulness Metric for Accuracy

Conservative

Bytes
reachable

Time

Accurate

Reachability traversal: 1 2 3
Reachability reduction: 10% 20% 0%

� The accurate scheme reduced reachability by 10% on average.

17

Outline

• Related work
• Summary

Conclusion

• Reachable heap given various levels
of accuracy

Results

• Obtaining liveness information
• Metrics

Methodology

• Motivation
• Preview of results

Introduction

18

Benchmarks

Spec959 030 8727 597Cli

Spec95

GNU

Austin

Austin

Austin

Austin

Austin

Bezault

Hillion

Durian

Hirzel

Bartlett

Bartlett

Author/Source

148 664

14 180

12 382 400

41 380

166 832

7 920

259 512

106 392

109 548

222 300

28 700

1 123 180

2 200 004

Total allocation [Bytes]Language Lines of CodeName

31 211

8 163

7 308

3 979

2 156

782

647

17 185

3 137

927

350

196

85

Cijpeg

Cgzip

Cbc

Cyacr2

Cft

Cks

Canagram

Programs with explicit deallocation:

Eiffelgegrep

Eiffelebignum

Eiffelerbt

Eiffelbshift

Cgctest

Cgctest3

Programs written with GC in mind:

19

Usefulness of Liveness

0
10
20
30
40
50
60

% Bytes

gc
tes

t3
gc

tes
t

bs
hif

t
erb

t
eb

ign
um li

ge
gr

ep
an

ag
ra

m ks ft
ya

cr2 bc gz
ip

ijp
eg

Reachability reduction with strongest liveness

average
at peak

20

Usefulness of Liveness

0
10
20
30
40
50
60

% Bytes

gc
tes

t3
gc

tes
t

bs
hif

t
erb

t
eb

ign
um li

ge
gr

ep
an

ag
ra

m ks ft
ya

cr2 bc gz
ip

ijp
eg

Reachability reduction with strongest liveness

average
at peak

79

94

98 87

2

98

90

98

50

20

%
s traversalNum

different Traversals

0 0 0 0

21

Different Levels of Liveness

0

10

20

30

40

50

60
% Bytes

gc
tes

t3
bs

hif
t

erb
t

eb
ign

um li
ge

gre
p

ya
cr2 bc gz

ip
ijp

eg
Reachability reduction stack intra scalars

s.+glob inter all
s.+glob inter scalars
s.+glob intra scalars
stack inter all
stack inter scalars

22

Type versus Liveness Accuracy

0
10
20
30
40
50
60

% Bytes

gc
tes

t3
bs

hif
t

erb
t

eb
ign

um li
ge

gr
ep

ya
cr2 bc gz

ip
ijp

eg

Reachability reduction
Type (Pentium)
Liveness
Type+Liveness

23

Validation

• Comparing liveness information found in
different runs
– For how many locations did the obtained

liveness information differ?
GlobalStackBenchmark

2.2

0.0

0.0

% different

1.3

2.7

0.7

% different

gzip

yacr2

gegrep

24

Outline

• Related work
• Summary

Conclusion

• Reachable heap given various levels
of accuracy

Results

• Obtaining liveness information
• Metrics

Methodology

• Motivation
• Preview of results

Introduction

25

Related Work

• Evaluating Accuracy
– Hirzel, Diwan: On the type accuracy of garbage

collection. ISMM 2000.
– Shaham, Kolodner, Sagiv: On the effectiveness

of GC in Java. ISMM 2000.
• Implementing Accuracy

– [Bartlett1988] [DiwanMossHudson1992]
[SmithMorrisett1998] [Zorn1993]
[AgesenDetlefsMoss1998] …

26

Summary

• Liveness accuracy can be very useful for
reachability traversals.

• Strong analyses are necessary to reach
significantly fewer Bytes.

• Type accuracy was not very useful in these
experiments.

