On the Usefulness of Liveness
for Garbage Collection
and Leak Detection

Martin Hirzel, Amer Diwan, and Antony Hosking

{hirzel,diwan} @cs.colorado.edu hosking @cs.purdue.edu

ECOOP June 2001 Budapest, Hungary

What 1s LLiveness?

e A variable is if 1its value will be used in the future.

ast

Tree *ast = parse();
Cfg *cfg = translate(ast);

(code that does not use the value
of ast)

Accuracy and Reachability

Unreachable
—_—

X] C

— | ast
,D/ E

Accuracy and Reachability

Unreachable
—_—

X ’C\

................. ast [not live]
? D - E

e Liveness accuracy:
which variables are live?

Accuracy and Reachability

Unreachable
—_—

7

x [not a pointer] | ¢~

— | ast
’D/ E

 Type accuracy:
which variables hold pointers?

Accuracy and Reachability

B

x [not a pointer] '

ast [not live]

’D/

 Type accuracy:

Unreachable

which variables hold pointers?

e Liveness accuracy:

which variables are live?

The Questions

e Can liveness accuracy benefit reachability
traversals?

— Useftul for garbage collection?
— Useftul for leak detection?

 What kind of analysis 1s necessary?

Motivation

conservative partial full Type
none ® ® ® Accuracy
weak | O O O
strong | O O O
Liveness

© investigated in literature

Accuracy O unexplored

Results 1n a Nutshell

conservative partial full

o ° Type
none Accuracy
weak O O O

w0 O O
Liveness

© investigated in literature

Accuracy O unexplored

Outline

Introduction |* Motivation
e Preview of results
Methodology |e Obtaining liveness information
e Metrics
Results e Reachable heap given various
accuracy schemes
Conclusion | Related work

e Summary

10

Liveness Approaches

e Static analysis

— Compiler-analysis of source code

— Disadvantage: difficult, cost + benefits unclear
 Dynamic analysis

— Trace-based analysis

— Disadvantage: two runs needed, limit study

11

Infrastructure for Experiments

Analysis Accuracy
library selection

\ 4

h 4
C or Eiffel Instrument Link Run-1 | Trace Liveness
program analysis

12

Infrastructure for Experiments

C or Eliffel Instrument
program

T ype Information
x
{Link]_)[Run-z
- Liveness Information
Stubs +
BDW gc

13

Generating the Trace

Original Code Instrumented Code Trace
X = malloc (4*N); X = malloc (4*N);
note_allc_acat:l.on (); allocation(91)
note_assign (&x) ; .
_) assign(x)
i=0; i=0; C .
_ _ assign(i)
note_assign (&i); assign(y, x, i)
while (i < N) { while (i < N) { use(y)

y = x + 4*31;

y = x + 4*i;
note_assign (&y, &x, &1i) ;
*y = i;

note_use (&y) ;
note_assign(y, &i);
i++;
note_assign (&i, &i);

assign(91.0, i)
assign(i, i)
assign(y, X, i)
use(y)
assign(91.4, i)

14

Trace

Analyzing the Trace

Simulated Liveness State

Resulting Information

allocation(91)
assign(x)
assign(i)
assign(y, x, i)
use(y)
assign(91.0, i)
assign(i, i)
assign(y, x, i)
use(y)
assign(91.4, i)

““A variable is /ive if its value will be used in the future.”

X y I

T1: {x, i}

T1: {x, i)

T2: {}

15

Usefulness Metric for Accuracy

Bytes
reachable T

Conservative /.

Accurate ¥

/

: . . » Time

Reachability traversal: 1 2 3
Reachability reduction: 10% 20% 0%

— The accurate scheme reduced reachability by 10% on average.

16

Outline

Introduction |* Motivation
e Preview of results
Methodology |* Obtaining liveness information
e Metrics
Results e Reachable heap given various levels
of accuracy
Conclusion | Related work

e Summary

17

Benchmarks

Name I Language | Lines of Code | Total allocation [Bytes] | Author/Source
Programs written with GC in mind:

gctest3 C 85 2200 004 | Bartlett
gctest C 196 1123 180 | Bartlett
bshift Eiffel 350 28 700 | Hirzel
erbt Eiffel 927 222 300 | Durian
ebignum | Eiffel 3137 109 548 | Hillion
li C 7 597 9 030 872 | Spec95
gegrep Eiffel 17 185 106 392 | Bezault
Programs with explicit deallocation:

anagram | C 647 259 512 | Austin
ks C 782 7 920 | Austin
ft C 2156 166 832 | Austin
yacr2 C 3979 41 380 | Austin
bc C 7 308 12 382 400 | Austin
gzip C 8163 14 180 | GNU
ijpeg C 31211 148 664 | Spec95

18

Usefulness of LLiveness

Reachability reduction with strongest liveness

90 Bytes

19

Usefulness of LLiveness

Reachability reduction with strongest liveness
7% Bytes 98

°58$$%$

0 0 0 20

o“f@@ & v?;éé“@ & F NF

Traversals different

Num traversals

%

20

Different Levels of Liveness

stack intra scalars

% Bytes Reachability reduction
stack inter scalars

BEEOCONRE

60-
stack inter all

501 s.+glob intra scalars

40 s.+glob inter scalars
s.+glob inter all

30-

20

10 I E

0 .

(? S % P S
FEES g e

21

Type versus Liveness Accuracy

Reachability reduction
%0 Bytes
60- E Type (Pentium)
B Liveness
S0 [0 Type+Liveness
40_
30_
2‘)_

0
LEE
«?2’“" S

Validation

e Comparing liveness information found in

different runs

— For how many locations did the obtained
liveness information differ?

Benchmark Stack Global

% different| % different
gegrep 0.7 0.0
yacr2 2.7

gzip 1.3 2.2

Outline

Introduction |* Motivation
* Preview of results
Methodology |* Obtaining liveness information
e Metrics
Results e Reachable heap given various levels
of accuracy
Conclusion |* Related work

* Summary

24

Related Work

e Evaluating Accuracy

— Hirzel, Diwan: On the type accuracy of garbage
collection. ISMM 2000.

— Shaham, Kolodner, Sagiv: On the effectiveness
of GC 1n Java. ISMM 2000.

 Implementing Accuracy

— [Bartlett1988] [DiwanMossHudson1992]
[SmithMorrisett1998] [Zorn1993]
AgesenDetlefsMoss1998] ...

25

Summary

e Liveness accuracy can be very useful for
reachability traversals.

e Strong analyses are necessary to reach
significantly fewer Bytes.

* Type accuracy was not very useful in these
experiments.

26

