Robust Scripting via Patterns

Bard Bloom and Martin Hirzel
IBM T. J. Watson Research Center
October 2012

Setting

Thorn language

 |IBM and Purdue project, now in stasis
Dynamic Languages

— No static types

Concrete Data Structures

— Lists, records, objects / datatypes

Imperative languages

— But emphasis on declarative/functional

Related Work

SNOBOL4 (1966)

ML, ISWIM, Hope, Haskell, F#, Scala, Kotlin
Scheme, Newspeak, Python, Converge, OMeta
OCaml, JMatch

Views, Tom, Matchete

Plan

* Pattern Language
— Some fancy patterns

— First-class Patterns

* Integration with Thorn

— Patterns used everywhere

— Some interactions with standard control flow
* Usage

— Do Thorn programmers do what they can do?

Patterns (in the ML Sense)

Match a subject value against a pattern
— Can FAIL
— Can SUCCEED and bind some variables

mm_mm

Variable [1,2,3] succeed x=[1,2,3]
List [1,2,3] [X] fail

Wildcard [1,2,3] [x, , 1] succeed x=1
Head/Tail [1,2,3] [X,V...] succeed x=1, y=[2,3]
Literal [1,1] [x, 1] succeed x=1

Value [1,1] [x,5x] succeed x=1

Record <a=1,b=2,c=3> <a=x, b> succeed x=1, b=2

How Much Are They Used?

Corpus:

— 24K lines of code

— Most of the Thorn code in existence
Coders

— Bard (60%), skilled (30%), novices (10%)
Purposes

— Some examples of Good Thorn Style

— Some one-shot programs to throw away

This Is Not Science
— Literary Analysis, maybe
Negative results may be interesting too

Part |I: Control and Patterns

Control Structures and Patterns

* Design Principle: Put patterns wherever they
might make sense

* Design Principle: Patterns should be allowed
wherever variables are bound to arbitrary
values

— If it makes sense
— Deal with failure somehow
— E.g. Formal parameters can be patterns

Binding Statement

* Binding statement (LISP/ML let):
-x=[1,2,3]
* With pattern, it's destructuring
—[a,b,c] = 1[1,2,3]
— Exception if fails
* Usage: 3% of bindings have interesting pattern

— Bard prefers defensive programming

Scopes

* Design principle: pattern matches introduce
variables into the scope that will be executed
iff the match succeeds.

e Match Operation: E ~ P
— returns true on success, false on failure
— Produces bindings in right scope

 But what's the right scope?

— Depends on context...

if statement

1f(L ~ [x])
use(xX);

else
xUndefined();

We support

if (A~ P & B ~ Q && C ~ R)
— (But not general propositional logic)
37% of if's have matches

(There's a match statement too, but much less
used than 'if')

Patterns and while

* while: bindings in test can be used in body
while(R ~ <x>)
R := munge(R,X);
xUndefined();

Patterns and until

* Until: bindings in test can be used after body

—until(x.spouse ~ (!null && y))
X.date();
fileJointly(x,Vv)

— Precisely expresses "look for something"

* Rarely used (<1%)

— Searching comprehensions and recursion are
favored.

— Thorn bias: Most whiles were while(true) in actor
bodies

Patterns and Control, reprise

* There's value to making patterns aware of
control:
— if, for: 40%
— fun, lambda: 20%
— let, while, until: 1-3%

Part |l: Fancy Patterns

Kinds of Patterns

* Common Patterns
— Most patternly languages have these
— wildcard, variable, literal, list, ...

— 82% of Thorn patterns are common
e Count of syntax tree nodes
* Not counting variables

* Fancy Patterns
— Few languages have any of these
— Fewer have all of them.
— 18% of Thorn patterns are fancy
— Let's see a couple...

Fancy Pattern: Type Test

* General form: P: T
— matches a value of type T
— which must also match pattern P
— And binds what P does
* Idiom:
— fun f(x:1int) = x+3;

e Usage: 3.5% of all patterns

Fancy Pattern: Boolean Combinations

Pattern | Matches ___Binds _______________|usage
3%

P&&Q if bothPand Q Everything bound by P or Q
match (disjoint)

Pl]Q if either P or Q Everything bound by both Pand Q 0.2%
matches

IP if P fails nothing 0.1%

&& is useful

Pattern: x && [y, Z..]
— Matches a nonempty list
— Binds the whole list (x), the head (y) and tail (z)

as construct in pattern-bearing languages

— "Get a whole value and its parts”
Trans-as usage:

- [...,1]&&[...,2, ..]

— Matches a list containing 1 and 2 in either order
About 3% of patterns involve &&

— Mostly for the as idiom.

— No popular idioms for | | and !

— A good idiom makes a pattern operator popular.

Internal Matches

 General Form: E~P

— Succeeds if value of E matches P

— Binds what P does

— Can appear inside of patterns

— Usage: 3.5%
* Example: [x] && £(x) ~ [V,2Z]
* Swiss Army Construct

— E.g. optional field foo, defaulting to 22:
<foo=x> || 22~x

Part Ill: First-Class Patterns

* Fanciest of all the fancy patterns.

First-Class Patterns

* First-class functions are amazingly useful
— One of the top N ideas in programming languages

First-Class Patterns

* First-class functions are amazingly useful
— One of the top N ideas in programming languages

* First-class patterns are a bit cool
— One of the top N3 ideas in programming languages

Why abstract patterns?

 Summing binary trees
* Object/datatype representation:

fun sum(Fork(l,x,r)) = sum(l) + X + sum(r);
| sum(Leaf (x)) = X;

(This is the nicest code in the universe)

Why abstract patterns?

 Summing binary trees
* Object representation:

fun sum(Fork(l,x,r)) = sum(l) + X + sum(r);
| sum(Leaf (x)) = X;

* List representation:

fun sum([1l,x,r]) = sum(l) + x + sum(r);
|sum([x]) = X;

(this is also the nicest code in the universe)

Why abstract patterns?

 Summing binary trees
* Object representation:

fun sum(Fork(l,x,r)) = sum(l) + X + sum(r);
| sum(x) = X;

* List representation:

fun sum([1l,x,r]) = sum(l) + x + sum(r);
| sum(x) = X;

* Are we not computer scientists?
— And do we not abstract reflexively?

Pattern Expression, part 1

e Pattern Abstraction:

— Avalue (not a pattern).

— pat [x,y] = [%x,5%X,Y]

— X,y are outputs not inputs.

— X,y are scoped inside the expression
e Pattern Application

— E[r,s]isapattern

— 1,5 are subpatterns

— Appears in pattern context: somelist ~ E[r,s]
E = pat[x,y] = [X,$%X,Y]
L =1[3, 3, 4]
if (L ~ E[a,b]) assert(a==3, b==4)
if (L ~ E[a,9]) fails()

Sum with Representation Parameter

° Representation pattern
rp = <fork=fpat, leaf=lpat>
—rp.fork[1l,x,r] matches afork node
— rp.leaf[x] matches aleaf node
* Sum with explicit rp:
fun sum2(rp, rp.fork[l,x,r])
= sum2(rp,l) + x + sum2(rp,r)
| sum2 (rp, rp.leaf[x]) = X

No longer the most beautiful code in the universe

Computing the Representation

// Guess representation of a tree...

fun rep([_,_,_1 || [_1) = repList;
| rep(["Fork" || "Leaf", ...1]) = repTaggedList;
| rep(x:Tree) = repTree;
| rep(<left,item,right> || <leaf>) = repRecord;
// Use it!
fun sum(rep(it).fork[l,x,r]) = sum(l) + x + sum(r);

| sum(rep(it).leaf[x]) = X;

Pattern Abstractions, parts 2-N

* More variations
— pattern/constructor duality

— inputs and outputs

e Late addition to language

— We didn’t get to use them much

* Nice new toy!

Conclusion

* There's a lot more to patterns than ML-style
—P&&Q, E~P, pat[x]=P

e Patterns can be meshed with statements
—1f(L~[x,y]) use(x,Y);

* |f you have them, they will be used
— happily!

