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Abstract

Stream processing is important for analyzing continuous streams
of data in real time. Sliding-window aggregation is both needed for
many streaming applications and surprisingly hard to do efficiently.
Picking the wrong aggregation algorithm causes poor performance,
and knowledge of the right algorithms and when to use them is
scarce. This paper was written to accompany a tutorial, but can
be read as a stand-alone survey that aims to better educate the
community about fast sliding-window aggregation algorithms for
a variety of common aggregation operations and window types.

CCS Concepts +Information systems — Stream management;

Keywords Survey, incremental algorithms, windows, aggregation

ACM Reference format:

Martin Hirzel, Scott Schneider, and Kanat Tangwongsan. 2017. Tuto-
rial: Sliding-Window Aggregation Algorithms. In Proceedings of DEBS
’17, Barcelona, Spain, June 19-23, 2017, 4 pages.

DOI: 10.1145/3093742.3095107

1 Introduction

Aggregation is a common important feature in streaming applica-
tions. Such applications often need an aggregated summary of the
most recent data in a stream, which is deemed the most relevant.
The most recent data in a conceptually infinite stream is captured
by a sliding window, which has an intuitive meaning to the user
and a clear specification for the platform developer. Unfortunately,
it is nontrivial to perform sliding-window aggregation efficiently.
Naive approaches waste time and/or resources. A poorly chosen al-
gorithm can cause high latencies and bloated memory consumption,
leading to losses, missed opportunities, and quality-of-service viola-
tions. Furthermore, in practice, users may find that their streaming
platform does not support a particular aggregation operation or
window kind, or if it does, may not use the most efficient algorithm.

This paper aims to provide a concise but thorough exploration
of sliding-window aggregation algorithms, from theoretical and
practical perspectives. The goals are:

o To enable practitioners to hand-implement cases not handled by
their streaming platform of choice.

o To enable streaming platform engineers to extend the set of sup-
ported cases and use the best algorithms.

e To enable researchers to notice literature gaps and to stand on
the shoulder of giants when filling them.
The discussion in this paper makes a distinction between the

aggregation algorithm, the aggregation operation, and the window.

An algorithm, such as Subtract-on-evict, can be composed with an
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operation, such as avg, and a window, such as a 10-minute window
with 1-second granularity. Most algorithms address certain families
of operations and windows, but have limitations that make them
inapplicable to other combinations. Each algorithm comes with its
own data structures for storing the window contents, as well as
incremental aggregation state. Section 2 surveys operations and
Section 3 discusses windows. The bulk of the paper is the survey
of algorithms in Section 4.

To make the discussion more precise, we define an abstract data
type for sliding window aggregation (SWAG) as follows:

e insert(v,t) inserts value v into the window at time ¢. In the
first-in first-out (FIFO) case, t is younger than all times currently
in the window.

e evict(t) removes all values whose time is ¢t or older from the
window. In the FIFO case, t is the oldest time in the window.

o query(tsiart, tend> X) returns the aggregation of the window be-
tween fgqrs and t,,qy with argument x. The time arguments
enable window sharing, and the extra argument x can be used
in case the aggregation result is itself parametric.

Not all SWAG implementations support non-FIFO windows or win-
dow sharing, and most queries are non-parametric. In those cases,
we simplify the operations to insert(v), evict(), and query().

SWAGs are evaluated on their throughput, latency, and memory
footprint. The rest of the paper will mainly discuss these metrics
via theoretical algorithmic complexity: throughput and latency are
driven by average-case and worst-case time complexity, and foot-
print depends on space complexity. We made a conscious decision
to keep the presentation independent of any particular streaming
platform by tackling the subject matter at an algorithmic level. That
said, actual performance in practice also depends on other factors.
For instance, footprint is sometimes less important than the active
working set, which determines cache misses and thus indirectly
influences latency and throughput.

2 Aggregation Operations

We want to apply aggregation operations incrementally, as data
items are inserted and evicted from a sliding window. To that end,
it is useful to break down each operation into the three functions
1ift, combine, and lower as follows:
e lift turns a stream data item into an intermediate result.
E.g.: avg.lift(d) = (d, 1).
e combine merges pairs of intermediate results.
E.g.: avg. combine({s1, n1), (s2, n2)) = {(s1 + sz, n1 + nz).
The choice to combine two intermediate results rather than one
intermediate result and one input stream data item is essential
for some aggregation algorithms. We agree with Guy Steele’s
assessment “foldl and foldr considered slightly harmful” [18].
e lower turns an intermediate result into a final result.
E.g.: avg. lower((s, n)) = s/n.
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e sum-like: sum, count, average, | vv v Vv vV V
standard deviation, ...
e collect-like: collect list, conca- | v v X X ?
tenate strings, ith-youngest,
e median-like: median, v v v o ox ?
percentile, ith—smallest,
e max-like: max, min, argMax, x v ? v V
argMin, maxCount, ...
o sketch-like: Bloom filter [3], x v v v X
CountMin [5], HyperLogLog [6]

Table 1. Aggregation operations. Checkmarks (v'), crosses (X), and
question marks (?) indicate a property is true for all, false for all,
or false for some of a given group of like operations, respectively.

In this example, Iower is unary, but in some cases, it takes ad-
ditional arguments, such as i for ith—smallest, or an element
identifier for a Bloom filter membership test.

Table 1 lists aggregation operations, characterizes them with prop-
erties, and groups them into categories. For example, avg belongs
to the sum-like category, for which all properties we consider hold.

Let us define @ as a binary operator version of the combine func-
tion. An aggregation function is invertible if there exists some
function © such that (x ® y) © y = x for all x and y. SWAGs can
take advantage of invertible aggregation functions by implement-
ing deletion as an undo; just apply © to the accumulated state. A
function is associative if x ® (y ®z) = (x ®y) ® z for all x, y, and z.
SWAGs can take advantage of associativity by applying @ at arbi-
trary places inside the window. Without associativity, SWAGs are
restricted to applying @ only at the end, upon insertion. A function
is commutative if x ® y = y @ x for all x and y. SWAGs are able to
ignore data item insertion order for commutative aggregation op-
erators. A function is size-preserving if the result of @ is always the
same size in memory. Aggregation functions that are size preserv-
ing will have constant memory costs. Finally, aggregation functions
with a unary lower do not require any additional information to
apply the Iower function to produce a result.

The set of properties we chose harmonizes properties of ag-
gregation operations defined in prior work [8, 20]. Even though
some properties are specific to only the combine function, we
slightly abuse terminology to let them refer to the entire oper-
ation. For instance, we say the avg operation is invertible because
the avg. combine function is invertible.

3 Windows

This section only discusses window interfaces and implementation
techniques germane to aggregation. Windows are exhaustively
cataloged [7] and formally treated [4] elsewhere.

We begin by outlining a chunked-array queue implementation
for FIFO windows [19]. The main operations are pushBack(v) and
popFront(), which, respectively, insert v at the back of the queue
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Complexity Applicability
Time Space restrictions
e Recalculate worst-case O(n) O(n) | no restrictions
from scratch
e Subtract on worst-case O(1) O(n) | sum-like or
evict collect-like
o Order statis- | worst-case O(logn) O(n) | median-like
tics tree [9]
e Reactive Ag- | average O(logn) O(n) | size-preserving,
gregator [20] assoc.
o Two- average O(1) O(n) | size-preserving,
stacks [1] assoc., FIFO
e DABA [19] worst-case O(1) O(n) | size-preserving,
assoc., FIFO
e B-Int [2] shared O(log nmax) O(nmax) | size-preserving,
assoc., FIFO

Table 2. Aggregation algorithms.

and evict the front element from the queue. Additionally, the queue
provides a bidirectional iterator, which can be thought of as pointers
into the queue. To support all operations in O(1) time using O(n)
space, it maintains a doubly-linked list of chunks, each a fixed-size
array of elements. This means allocation only happens when the
rear chunk is full and deallocation when the front chunk becomes
empty. By contrast, an implementation that keeps a single array
(e.g., using C++’s STL vector or Java’s ArrayList) occasionally
spends linear time to grow or shrink the underlying array.

0111 2]1[3]([4]1[5 6]|[S

Window Optimization Techniques: When the 11ift function is
deterministic, it only has to be applied to each element once when it
first arrives; the lifted version is kept in the window, saving the cost
of 1ift calls. Furthermore, data items that will be evicted together
may be combined at insertion [11, 12]. This not only saves space
but also reduces the effective window size n, thereby improving the
running time. Another common technique is window partitioning,
sometimes used as a means to maintain grouped-by aggregation and
obtain data parallelism using fission [15]. This can be implemented
by running multiple independent instances of a SWAG, one per
partition, and keeping a (hash-)map that relates attributes in data
items to the appropriate instance.

4 Aggregation Algorithms

This section covers each of the algorithms in Table 2. In the complex-
ity columns, n refers to the current window size. For example, each
insertion to or eviction from an order statistics tree takes at most
O(log n) time. The time complexity of the B-Int algorithm is given
as “shared O(log nmax)”, by which we mean that B-Int simultane-
ously aggregates multiple windows of different sizes using time log-
arithmic in the size nmax of the largest window. These algorithms
are the best-performing approaches for a range of circumstances.
The circumstances are summarized in the applicability-restrictions
column, which refers to properties of aggregation operations and
of windows. For example, the DABA algorithm works for any
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1 fun insert(v)

vals.pushBack(v) 2 vals.pushBack(v) 2 vals.pushBack(v) 2 B.push(v, Z“g @ v)
fun evict(Q) 3 agg <« agg ® v 3 tree.insert(v.k, v) 3 fun evict()
vals.popFront() 4 fun evict() 4 fun evict() 4 if F.isEmpty() // Flip
fun query() 5 v « vals.popFront() 5 v « vals.popFront() 5 while not B.isEmpty()
agg « 0 6 agg « agg © v ¢ tree.remove(v.k, v) 6 F.push(B.top() .val, B.top().val EBZGIE)
for each v in vals 7 fun query() 7 fun query(i) 7 B.pop(Q)
agg <« agg ® v g8  return agg 8 return tree.select(i) 8  F.popQ
return agg 9 fun query(Q)

Figure 2. Subtract-on-

Figure 1. Recalculate-
evict SWAG algorithm.

from-scratch SWAG al-
gorithm.

size-preserving associative aggregation operations if the window
is strictly first-in-first-out (FIFO).

4.1 Recalculate from Scratch

Figure 1 shows the simplest and most general SWAG algorithm,
which just aggregates the window contents with a loop on every
query call. The 0 sign in Line 6 represents the identity element for
®, meaning x ® § = x = § @ x for all x. This algorithm requires no
fancy data structure. If the window is FIFO, the values vals can just
be kept in a chunked-array queue from Section 3. Unfortunately,
the approach takes O(n) time, making it prohibitively expensive
for large windows.

4.2 Subtract on Evict

When the aggregation operation’s @ has an inverse ©, the SWAG
can maintain a current aggregation agg by adding and subtracting
for insert and evict, as shown in Figure 2. When it is applicable,
Subtract-on-evict takes O(1) time and is simple to implement. Un-
fortunately, many aggregation operations are not invertible, and
even arithmetic addition is not invertible for floating point.

4.3 Order Statistics Tree

An order statistics tree is a variant of a balanced search tree that sup-
ports an additional select(i) operation for finding the ith smallest
value in the tree.! It can be used to implement a SWAG for median-
like aggregation operations in O(log n) time [9]. The idea is to place
each stream value both in a queue and in the order statistics tree.
Then, for instance, median is implemented as query(|n/2]), and
the p™ percentile is query(|n - £~ 1). Figure 3 shows the algorithm
for the general case of computing the i!-smallest value, where i is
a runtime argument.

4.4 Reactive Aggregator

The Reactive Aggregator (RA) works for any size-preserving asso-
ciative aggregation operation, even non-invertible ones, and does
not require FIFO windows [20]. RA is implemented via a balanced
tree ordered by time, where internal nodes hold the partial aggre-
gations of their subtrees, and offers O(log n) performance. Instead
of the conventional approach to implementing balanced trees by
frequent rebalancing, RA projects the tree over a complete perfect
binary tree, which it stores in a flat array. Doing so requires some
extra care of how the intermediate results are stored and combined.

https://en.wikipedia.org/wiki/Order_statistic_tree

Figure 3. Order statistics
tree SWAG algorithm.

10 return 3¢ 63§
n fun 3%: F.isEmpty() ? 0 :
12 fun 3%: B.isEmpty(Q ? 0 :

F.topQ).agg
B.top().agg

Figure 4. Two-stacks SWAG algorithm.

In return, the flat-array implementation leads to higher perfor-
mance than other tree-based SWAG implementations in practice,
since it saves the time of rebalancing as well as the overheads of
pointers and fine-grained memory allocation.

One of the advantages of RA is that it can handle non-FIFO win-
dows as long as the aggregation operation is commutative. Aside
from RA, there are also other, orthogonal approaches for handling
out-of-order streams and non-FIFO windows. Krishnamurthy et
al. show how to reconcile a small number of streams that drift
arbitrarily far from each other by merging their pre-aggregated
values [10]. Srivastava and Widom show how to reconcile stream
values arriving with a large variety of small delays by placing new
values in a holding buffer first [17].

4.5 Two-Stacks

When the window is FIFO, the running time can be substantially
improved. The Two-stacks algorithm [19], building on prior spe-
cialized solutions [1, 16], maintains two aggregating stacks. Ag-
gregation is easy on a stack: by storing with every element the
aggregation of all data items below it, the algorithm can support
stack operations in O(1) time. Using an old functional program-
ming trick, a queue (SWAG) is maintained as two stacks, front F and
back B. The whole algorithm is simple, as shown in Figure 4. As a
data item arrives (insert), it is pushed into B and later popped from
F when evicted (evict). Transfer from B to F happens when evict
needs to pop an item from F but F is empty. Each transfer empties
out B and reinserts the items into F, costing O(n) time. Since trans-
fer only happens occasionally, Two-stacks achieves O(1) amortized
time for all SWAG operations, yielding impressive throughput in
practice. But because it can occasionally spend linear time in evict,
Two-stacks is inappropriate for latency-critical situations.

4.6 DABA

For latency-sensitive applications, the aggregation algorithm can-
not afford a long pause. Building on Two-stacks, the De-Amortized
Banker’s Aggregator (DABA) [19] ensures that every SWAG opera-
tion takes O(1) time in the worst-case, not just on average. While
Two-stacks must occasionally flip the back stack (B) onto the front
stack (F), costing O(n) time, DABA gradually performs this oper-
ation, making some progress with every pushBack and popFront.
This is accomplished by extending Okasaki’s functional queue [13],
which guarantees that by the time a data item is needed in F, it
has already been transferred over. However, Okasaki’s functional
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Figure 5. Base intervals between indices 47 and 66. Shaded in blue
are base intervals that make up interval [49, 66].

queue depends on lazy evaluation and automatic garbage collec-
tion. DABA sidesteps these requirements by performing all the
actions on a single chunked-array queue, with different moving
parts maintained as pointers into the queue. This has been shown
to keep the overhead small while supporting SWAG operations
in worst-case O(1) time as long as combine is a size-preserving
associative operator and the window is FIFO.

4.7 B-Int

All the algorithms discussed so far were designed to answer aggre-
gation queries about one specific window. Unlike these algorithms,
B-Int (short for base intervals) [2] was designed to facilitate shar-
ing between different windows. It does so by storing a “shared”
window S that contains inside it all the windows being shared. In
this manner, aggregation queries between any two endpoints can
be answered as long as the endpoints lie within the shared window.
But this by itself does not yield fast SWAG operations. In addition
to keeping the contents of S, B-Int maintains certain preaggregated
values, so that a query between the i-th data item and j-th data
item within S can be answered by combining at most O(log |i — j|)
preaggregated values, resulting in logarithmic running time.
These preaggregated values are derived for all base intervals
that lie within S. Base intervals (more commonly known now as
dyadic intervals) are intervals of the form [2¢k, 20 (k + 1) — 1] with
¢,k > 0. The parameter ¢ defines the level of a base interval. The
base interval [i, j] contains all data items between the i-th data item
and the j-th data item in the stream. That is, whether a data item
belongs in a base interval depends on the position of this data item
in the stream, not its position in the window. Figure 5 shows all
base intervals relevant to indices between 47 and 66. Notice how
the interval [49, 66], which is not a base interval itself, is made up
of a small number of base intervals (shaded in blue). To answer
an aggregation query about interval [49, 66], B-Int combines the
preaggregated values of these shaded intervals. When the size
of S is fixed at nmax, each level of base intervals can be stored in
an array—as a circular buffer—using O(nmax/2%) space, leading to
a footprint of O(nmax) overall. B-Int is applicable provided that
combine is associative and size-preserving and the window is FIFO.

5 Conclusions

A simple way to speed up sliding-window aggregation (SWAG) is to
select the right algorithm. Algorithm selection is easier than many
other optimizations for streaming applications [14]. To choose the
right SWAG algorithm, one must consider the aggregation opera-
tion, the window kind, and requirements for latency, out-of-order
processing, and sharing, if any. There may not be an acceptable
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algorithm for all combinations of requirements. When there is such
a gap in the choices for algorithms, one option is to compromise
on some of the requirements. For instance, one can pick a win-
dow that is easier to handle, e.g., by coarsening the granularity by
which the window slides. That said, this paper aims at spreading
the knowledge of available choices, so users need not compromise
unnecessarily. Of course, from the perspective of researchers, litera-
ture gaps are opportunities. For instance, improving the algorithmic
complexity by inventing a new algorithm for a particular set of
circumstances is intellectually rewarding.
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