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Abstract
Sliding-window aggregation is a widely-used approach for extract-
ing insights from the most recent portion of a data stream. The
aggregations of interest can usually be cast as binary operators that
are associative, but they are not necessarily commutative nor in-
vertible. Non-invertible operators, however, are di�cult to support
e�ciently. The best published algorithms require O (logn) aggre-
gation steps per window operation, where n is the sliding-window
size at that point. For a FIFO window, this can be improved to O (1)
on average by using two aggregation stacks.

This paper presents DABA, a novel algorithm for aggregating
FIFO sliding windows that signi�cantly improves upon these time
bounds. DABA requires only O (1) aggregation steps per operation
in the worst case (not just on average). As such, DABA asymptot-
ically improves the performance of sliding-window aggregation
without restricting the operator to be invertible. Our experimental
results demonstrate that these theoretical improvements hold in
practice. DABA is a substantial improvement over the state of the
art in terms of both latency and throughput.
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1 Introduction
Stream processing is a now-standard paradigm for handling high-
speed continuous data, spurring the development of many stream-
processing engines in the past few years [1, 3, 4, 8, 10, 13, 18, 21,
28, 31]. Since stream processing is often subject to strict quality-
of-service requirements or real-time requirements, low-latency
responses are often a must. Aggregation (e.g., computing the sum
or geometric mean) is a mainstay of stream processing. It is one
of the most common computations in streaming applications, used
both standalone and as a building block for more sophisticated
analytics. Unfortunately, existing techniques for sliding-window
aggregation cannot consistently guarantee low latency.

Because the newest data is often deemed more pertinent or valu-
able than older data, streaming aggregation is typically performed
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Algorithm Time Space Invertible FIFO

Subtract on Evict worst O (1) O (n) needed no
Recalculate from Scratch worst O (n) O (n) no no
Reactive Aggregator [27] avg. O (logn) O (n) no no

Two-Stacks avg. O (1) O (n) no needed
FOA and IOA worst O (1) O (n) no needed
DABA worst O (1) O (n) no needed

Table 1. Comparison of sliding window aggregation algorithms.
Time and space indicate algorithmic complexity. Invertible indi-
cates a limitation on ⊕, and FIFO indicates a limitation on the
window. For example, Subtract on Evict runs in worst-case O (1)
time, uses O (n) space, requires ⊕ to be invertible, but does not
require the window to be FIFO.

on a sliding window (e.g., the last hour’s worth of data). This not
only provides intuitive semantics to the end users but also helps
bound the amount of data the system has to keep around. An algo-
rithm for sliding-window aggregation supports three operations
(formally described in Section 2): insert for a data item’s arrival,
query for requesting the current aggregation outcome, and evict
for a data item’s departure. Following Boykin et al. [8], we use
the term aggregation broadly, to include both classical relational
aggregation operators such as sum, geometric mean, and maxi-
mum, as well as a more general class of associative operators. For
instance, Bloom �lters [7] can be implemented as an associative
binary operator.

This paper introduces the De-Amortized Banker’s Aggregator
(DABA), a novel general-purpose sliding-window aggregation algo-
rithm that guarantees low-latency response on every operation—in
the worst case, not just on average. The algorithm is simple, and
supports both �xed-sized and variable-sized windows. It works as
long as (i) the aggregation operator, denoted by ⊕ in this paper,
is an associative binary operator and (ii) the window has �rst-in
�rst-out (FIFO) semantics. More precisely, DABA supports each
of the query, insert, and evict operations by making at most a
constant number of calls to the ⊕ operator in the worst case. This
is independent of the window size, denoted by n in this paper.

Prior to this work, the fastest algorithms in the published litera-
ture required O (logn) calls to the ⊕ operator for each of the query,
insert, and evict operations. These algorithms keep some number
of partial sums in the form of a balanced aggregation tree or dyadic
intervals [5, 20, 27, 29]. Some of these algorithms also support
non-FIFO windows but at the expense of occasionally spending
O (n) to grow, shrink, or compact the data structure.

However, for the FIFO setting considered in this paper, we can
formulate a faster algorithm by generalizing an idea posted on Stack
Over�ow for maintaining the minimum of a queue [2, 24]. The
Two-Stacks algorithm in Figure 1 uses an old trick from functional
programming to implement a queue with two stacks, front F and
back B. Each stack element contains a value val and an aggregation
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1 fun query()

2 return Σ⊕F ⊕ Σ⊕B
3 fun Σ⊕F : if F.isEmpty() return 0̄ else return F.top().agg
4 fun Σ⊕B: if B.isEmpty() return 0̄ else return B.top().agg
5 fun insert(v)
6 B.push(v, Σ⊕B ⊕ v)
7 fun evict()

8 if F.isEmpty() // Flip
9 while not B.isEmpty()

10 F.push(B.top().val, B.top().val ⊕ Σ⊕F )
11 B.pop()

12 F.pop()

Figure 1. Two-Stacks algorithm.

agg of everything below it on the stack. Insertions push on B and
evictions pop from F . When F is empty, the algorithm �ips B
onto F , taking n invocations of ⊕. But this cost is amortized over
the n insertions that pushed the elements in the �rst place. That
means each of query, insert, and evict invokes the ⊕ operator,
on average, a constant number of times. Unfortunately, due to the
occasional O (n) operation, we measured the standard deviation of
the latency to be 12–54× the average latency for Two-Stacks.

In theoretical terms, Two-Stacks is amortized constant whereas
DABA is worst-case constant. As far as we know, DABA is the �rst
algorithm to guarantee a worst-case constant bound for any binary
associative operator and a FIFO window. The design for DABA
builds on the following two ideas:
• FIFO sliding-window aggregation can be implemented in average-

case O (1) time using the Two-Stacks algorithm.
• A FIFO data structure can be maintained in worst-case O (1)

time using, for example, Okasaki’s functional queue [22].
We derive DABA by extending these ideas in several directions.
In broad strokes, Okasaki’s functional queue avoids occasional
high-latency actions by spreading them out roughly equally over
multiple operations. Though some care is required, combining
these ideas results in what we call Functional Okasaki Aggregator
(FOA), a functional implementation that yields an O (1) worst-case
bound for all three operations. Implementing FOA as described
requires a functional language with lazy evaluation and automatic
garbage collection. By relying on simple reference counting in place
of garbage collection, and manually tailoring lazy evaluation for
this particular case, we derive Imperative Okasaki Aggregator (IOA),
which can be implemented in C++. IOA, however, is not memory-
friendly. DABA takes this one step further: instead of a recursive
functional data structure, it uses an e�cient �at representation
while being able to perform the high-latency actions gradually so
each operation incurs at most four calls to the ⊕ operator.

Beyond FIFO windows, various other settings have been stud-
ied. For invertible operators, Subtract-on-Evict (Figure 2) delivers
great performance. By keeping a running sum, it invokes ⊕ at
most O (1) times per window change. But this requires ⊕ to be
invertible, which many operators of prime interest are not. To
handle non-invertibility, one can aim for generality: Recalculate-
from-Scratch (Figure 3) keeps a queue of window contents that
can be walked from front to back, requiring O (n) invocations to ⊕
per query. However, the linear time complexity makes it infeasible
for large n. One way to side-step this issue is via coarse-grained
windows where evictions occur in batches. By pre-aggregating

1 fun query()

2 return agg

3 fun insert(v)
4 vals.pushBack(v)
5 agg ← agg ⊕ v
6 fun evict()

7 v ← vals.popFront()
8 agg ← agg ⊕ inv(v )

Figure 2. Subtract-on-Evict
algorithm.

1 fun query()

2 agg ← 0̄
3 for each v in vals
4 agg ← agg ⊕ v
5 return agg

6 fun insert(v)
7 vals.pushBack(v)
8 fun evict()

9 vals.popFront()

Figure 3. Recalculate-from-
Scratch algorithm.

inside each batch, the cost of aggregating across batches shrinks.
But coarse-grained windows are an approximation that does not al-
ways satisfy application requirements. Handling the non-invertible
case e�ciently is more involved and has been extensively stud-
ied [5, 17, 19, 20, 27, 29]. Table 1 summarizes this discussion. DABA
takes a large step forward by supporting non-invertible operators
in worst-case constant time.

Experiments show that DABA performs well in practice. We
have implemented our new algorithm in C++ and benchmarked
it against several alternative approaches. The results show that
DABA has small overhead: only slightly slower than naïve ap-
proaches for very small windows. For moderate and large windows,
it incurs much better latencies than existing algorithms, thanks
to the asymptotic di�erences. When the associative operator of
the underlying aggregation is constant-time, then DABA o�ers
constant-time sliding-window aggregation with a small constant.

2 Problem De�nition
This section formalizes the problem of maintaining aggregation
in a �rst-in �rst-out sliding window and discusses the kinds of
aggregations supported in this work.

2.1 Sliding-Window Aggregation Data Type
Sliding-window aggregation usually operates on a �rst-in �rst-out
(FIFO) window. In this type of window, the earliest data item to
arrive is also the earliest data item to leave the window. Hence, the
sliding window is essentially a queue that supports aggregation
of the queue’s data from the earliest to the latest. As a queue, the
window is only a�ected by two kinds of changes:
Data Arrival: The arrival of a window data item results in a new

data item at the end of the window. This is often triggered by
the arrival of a data item in a relevant stream.

Data Eviction: An eviction causes the data item at the front of
the window to be removed from the window. The choice of when
this happens is typically controlled by the window policy (e.g., a
time-based window evicts the earliest data item when it falls out
of the time frame of interest and a count-based window evicts the
earliest data item to keep the size �xed [12]). Window eviction
policies are orthogonal to the algorithms in this paper.

This section models the problem of maintaining aggregation in
a FIFO sliding window as an abstract data type (ADT) with an
interface similar to that of a queue. To begin, we review an algebraic
structure called a monoid:
De�nition: A monoid is a tripleM = (S, ⊕, 0̄) where ⊕ : S×S → S
is a binary operator on S such that
– Associativity: For all a,b, c ∈ S , a ⊕ (b ⊕ c ) = (a ⊕ b) ⊕ c; and
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Figure 4. SWAG example trace. The sliding-window maintains the
maximum value (bolded and surrounded by a shaded circle).

– Identity: 0̄ ∈ S is the identity: 0̄ ⊕ a = a = a ⊕ 0̄ for all a ∈ S .

In comparison to real-number arithmetic, the ⊕ operator can be
seen as a generalization of arithmetic addition where the identity
element 0̄ is a generalization of the number zero.

A monoid is commutative if a ⊕ b = b ⊕ a for all a,b ∈ S . A
monoid has a left inverse if there exists a (known and reasonably
cheap) function inv(·) such that a ⊕ b ⊕ inv(a) = b for all a,b ∈ S .
In general, a monoid may not be commutative nor invertible.

In the context of aggregation, monoids strike a good balance
between generality and e�ciency as was demonstrated before [8, 27,
30]. For this reason, we focus our attention on supporting monoidal
aggregation, formulating the abstract data type as follows:

De�nition: The �rst-in �rst-out sliding-window aggregation (SWAG)
abstract data type maintains a collection of window data and sup-
ports the following operations:
• insert(v ) addsv to the rear of the sliding window. That is, if the

sliding window contains values v0,v1, . . . ,vn−1 in their arrival
order, then insert(v ) updates the collection to v ′0,v

′
1, . . . ,v

′
n ,

where v ′i = vi for i = 0, 1, . . . ,n − 1 and v ′n = v .
• evict() removes the oldest item from the sliding window. That

is to say, if the sliding window contains values v0,v1, . . . ,vn−1
in their arrival order, then evict() updates the collection to
v ′0,v

′
1, . . . ,v

′
n−2, where v ′i = vi+1 for i = 0, 1, 2, . . . ,n − 2.

• query () returns the ordered monoidal sum of the window data.
That is, if the sliding window contains values v0,v1, . . . ,vn−1
in their arrival order, query returns v0 ⊕ v1 ⊕ · · · ⊕ vn−1. If the
window is empty, it returns 0̄.

Throughout the paper, n will denote the size of the current sliding
window andv0,v1, . . . ,vn−1 will denote the contents of the sliding
window in their arrival order, where v0 is the oldest element.

Example: As a running example, Figure 4 shows a typical interac-
tion with the SWAG data type. The example SWAG uses the max
function as the binary operator and −∞ as the identity element.
It is easy to check that this is a monoid. Steps in the �gure show
SWAG interactions starting from a sliding window containing ele-
ments 2, 6, 3, 5, 3. For each state in the trace, the maximum element
in the window is shown in bold. Step a→b evicts the element at
the front (2), causing the window to be 6, 3, 5, 3. Step b→c then
inserts 1, yielding the window 6, 3, 5, 3, 1. The remaining steps alter-
nate between evict and insert operations, causing the maximum

to change. Even though in this trace, insert and evict alternate,
the SWAG data type, as well as all our algorithms, places no re-
strictions on how insert and evict may be called. They can be
arbitrarily interleaved, allowing for dynamically-sized windows.

2.2 Aggregation on Monoids
Despite their simplicity, monoids are expressive enough to cap-
ture most basic aggregations [8, 27], as well as more sophisticated
aggregations such as maintaining approximate membership via
a Bloom �lter [7], maintaining an approximate count of distinct
elements [11], and maintaining the versatile count-min sketch [9].

However, many aggregations (e.g., standard deviation) are not
themselves monoids but can be couched as operations on a monoid
with the help of two extra steps. To accomplish this, prior work [27]
gives a framework for the developer to provide three types In, Agg,
and Out and write three functions as follows:
• lift(e : In) : Agg takes an element of the input type and “lifts”

it to an aggregation type that will be monoid operable.
• combine(v1 : Agg,v2 : Agg) : Agg is a binary operator operating

on the aggregation type. In our paper’s terminology, combine is
the monoidal binary operator ⊕.

• lower(a : Agg) : Out turns an element of the aggregation type
into an element of the output type.

As an example, for arithmetic mean, we write:

lift(e ) = {n ← 1, Σ← e}
combine(v1,v2) = {n ← v1.n +v2.n, Σ← v1.Σ +v2.Σ}

lower(a) = a.Σ/a.n.

In this framework, a query is conceptually answered as follows. If
the sliding window currently contains the elements e0, e1, . . . , en−1,
from the earliest to the latest, then lift derives vi = lift(ei ) for
i = 0, 1, 2, . . . ,n − 1. Then, combine, rendered as in�x ⊕, is used to
compute a = v0 ⊕v1 ⊕ · · · ⊕vn−1. Finally, lower is used to produce
the �nal answer as lower(a).

Note that lift only needs to be applied to each element when it
�rst arrives and lower to query results at the end. Therefore, the
present paper focuses exclusively on the issue of maintaining the
monoidal sum—i.e., how to call combine as rarely as possible.

3 Okasaki-Based Aggregators
Our �rst two aggregation algorithms build upon Okasaki’s real-
time queue [22]. This queue is a FIFO data structure where adding
and removing an element takes worst-caseO (1) time. But the queue
does not support aggregation. In this section, we review Okasaki’s
algorithm and extend it to support aggregation. Our algorithms
invoke ⊕ at most O (1) times per operation, even in the worst-case.

While this already represents theoretical improvements to the
state of the art, the algorithms require laziness (a feature missing
from most main-stream programming languages) and make heavy
use of �ne-grained memory allocation and pointer-chasing. Our
experiments found that this hampers performance. The next section
will address these issues (impatient readers may want to skip ahead
to Section 4).

3.1 Functional Okasaki Aggregator (FOA)
We begin by describing Functional Okasaki Aggregator (FOA). The
main idea behind FOA is to incrementalize the Two-Stacks algo-
rithm. As common in functional programming, stacks are referred
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to as lists. FOA uses only functional programming features and
avoids mutating assignments. The basis for FOA is lazy functional
lists with aggregations supporting the following operations:
– [] constructs an empty list.
– cons(v,a, `) constructs a list with the �rst value v , aggregation

a, and tail list `. Most notably, it is lazy in `: If a call to cons
passes an expression to `, that expression is not evaluated at
the time of cons, but postponed until that tail list is inspected.
This may happen much later or never at all. The laziness of the
` argument is essential for FOA’s algorithmic complexity as it
prevents work from happening all at once, which would break
the worst-case O (1) time bound. The ` argument to cons is the
only place where FOA uses laziness.

– head (`) retrieves the �rst value from list `.
– agg(`) retrieves the aggregation from list `.
– tail(`) retrieves the tail list from list `.
FOA always uses cons(v,a, `) such that either a = v ⊕ agg(`) or
a = agg(`) ⊕ v , depending on whether the list being constructed
represents elements from the sliding window in forward or reverse
order. At this point, it may seem natural to bake the calculation for
a into cons. However, this would not work because literally calling
agg(`) on the tail ` would force its evaluation and thus break the
O (1) behavior. Instead, FOA is designed to derive the aggregation
result out-of-band and pass that to cons.

The FOA data structure is a triple 〈F ,N ,B〉 of lists. List F (front)
contains the oldest window elements, list N (next) is a sublist of F ,
and list B (back) contains the newest window elements. In other
words, F and B correspond to the two stacks of the Two-Stacks
algorithm, and N is a pointer into the interior of F . To support
both fast eviction from the front and fast insertion at the back,
lists F and B store their elements in the opposite order: the head
of F is the oldest (�rst-in) element, whereas the head of B is the
newest (last-in) element. Since evictions would eventually drain F ,
the algorithm must occasionally move elements from B to F while
rotating them, i.e., reversing their order.

To operate in worst-case O (1), the rotation must not happen
in one fell swoop. Okasaki shows how to carefully suspend and
resume rotation (rot) one element at a time using laziness. To
accomplish this, N points to the next element to rotate, and if
that element contains a suspended rot, then tail(N ) implicitly
forces it. Fortunately, Okasaki’s idea can be naturally extended to
incrementalize not just the FIFO queue but also its aggregation.

Figure 5 shows the FOA algorithm. We based FOA on Figure 4
of Okasaki’s paper [22], but we extended it for aggregation and
changed some variable names for clarity. Function query just re-
turns the monoidal sum of F and B. Function insert(v ) adds the
new element v to B, then calls makeq for one step of incremental
rotation. Similarly, function evict drops an element from F , then
calls makeq for one step of incremental rotation. Function makeq
has two cases. If N is empty (Line 8), that means the previous
incremental rotation has �nished, and it is time to start a new one.
Otherwise (Line 11), makeq calls tail(N ) to advance N by one ele-
ment, thus implicitly forcing one suspended rot step if N happened
to be pointing to a suspended invocation of rot.

Function rot(L,R,A) takes three lists as parameters, and returns
the concatenation of L (left) with the reversal of R (right) and with
A (accumulator). Its precondition is that |R | = |L| + 1, so it can
terminate when L is empty (Line 15). Since cons is lazy in its last
argument, the recursive call in Line 19 is not evaluated eagerly, and

1 fun query(〈F,N,B〉)
2 return agg(F) ⊕ agg(B)
3 fun insert(v, 〈F,N,B〉)
4 return makeq(〈F, N, cons(v, agg(B) ⊕ v, B)〉)
5 fun evict(〈F,N,B〉)
6 return makeq(〈tail(F), N, B〉)
7 fun makeq(〈F,N,B〉)
8 if isEmpty(N)

9 F' ← rot(F, B, [])
10 return 〈F', F', []〉
11 else

12 return 〈F, tail(N), B〉
13 fun rot(L, R, A)

14 A' ← cons(head(R), head(R) ⊕ agg(A), A)
15 if isEmpty(L)

16 return A'

17 else

18 return cons(head(L), agg(L) ⊕ agg(R) ⊕ agg(A),
19 rot(tail(L), tail(R), A'))

Figure 5. Functional Okasaki Aggregator (FOA) algorithm.
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instead results in a suspended invocation of rot. Figure 6 illustrates
this. Step b→c1 inserts an element to B (Line 4). Step c1→c2 is a call
to makeq with empty N . It thus executes Lines 9-10, calling rot and
binding both F and N to the result. Step c2→c eagerly executes the
�rst call to rot, but Lines 18-19 lazily call cons. Hence, execution
quiesces in State c with a suspended recursive invocation of rot
(Line 19) that is postponed to future sliding-window operations.

Figure 7 illustrates how FOA works on the entire running ex-
ample of SWAG trace from Figure 4. We already saw the details
of Step b→c, which introduces a new suspended rot. Pointer N
advances by one element in each subsequent step until Step g→h
(reaching the end of F ). Along the way, N forces suspended rots
when reaching them until Step e→f: R is empty and rot disappears.

We claimed earlier that FOA “knows” aggregations to pass to
cons without needing to force suspended invocations of rot. To
substantiate this claim, we �rst need a lemma:

Lemma 3.1. FOA has at most one suspended invocation of rot. Fur-
thermore, this suspended rot is in F , not in B.
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Figure 7. Functional Okasaki Aggregator (FOA) sample execution.

The proofs for Lemma 3.1, as well as for Theorems 3.2 and 3.3
below, are in Appendix A. Because of Lemma 3.1, the aggregation
arguments to cons in Lines 4, 14, and 18 only refer to fully rei�ed
lists without suspensions. Okasaki proves the following invariant
about his FIFO queue [22]:

|F | ≤ |B | and |N | = |L| − |R |
This invariant ensures that the algorithm always �nishes rotations
in time to enable evictions from F .

Theorem 3.2. If the window currently contains valuesv0, . . . ,vn−1,
FOA query returns v0 ⊕ . . . ⊕ vn−1.

Theorem 3.3. Each invocation of FOA query, insert, or evict
makes at most O (1) invocations of ⊕.

Theorem 3.2 establishes the correctness and Theorem 3.3 estab-
lishes the algorithmic complexity of FOA.

3.2 Imperative Okasaki Aggregator (IOA)
Building on Okasaki’s real-time queue, FOA requires a program-
ming language that o�ers lazy evaluation and automatic garbage
collection. Furthermore, strictly speaking, worst-case O (1) behav-
ior requires real-time garbage collection. While both features ex-
ist (e.g., Haskell is a language with lazy evaluation [15] and the
Metronome is a real-time garbage collector for Java [6]), neither
feature is mainstream. Furthermore, we wanted to experimentally
determine the performance of di�erent implementation strategies
and language compilers. Therefore, we also implemented a second
algorithm IOA, for Imperative Okasaki Aggregator, in C++.

For memory reclamation, IOA uses reference counting imple-
mented by std::shared_ptr in the C++ standard library. For lazi-
ness, IOA uses a hand-coded C++ class that can represent a list
cell as either forced or delayed. A forced list cell simply holds a
value, an aggregation, and a tail pointer to another list. Since the
only real use of laziness in FOA is the call to rot, a delayed list
cell holds the parameters to the suspended rot, i.e., L, R, and A.
Unfortunately, these implementation techniques make the code
unnatural. Furthermore, IOA still uses �ne-grained memory allo-
cation and pointer chasing, imposing a performance penalty on
modern architectures.

3.3 Beyond Okasaki-Based Aggregators
FOA and IOA introduced in this section are the �rst worst-caseO (1)
sliding-window aggregation algorithms. However, FOA uses un-
common language facilities and IOA uses unnatural implementation
techniques. Worse, Section 5 demonstrates that the performance
of both algorithms is hampered by the use of one heap-allocated
object per list element. In the next section, we aim to retain the
worst-case O (1) theoretical guarantee but reduce the overhead by
avoiding a large number of small memory allocations and pointer
chasing. We will exploit two observations: (1) There is at most one
suspended rot (Lemma 3.1), so we hold a few pointers on the side
instead of in �elds of individual list elements. (2) We purposely
visualized the execution trace in Figure 7 such that list elements do
not move horizontally on the page. When a list element appears in
two consecutive states, it does not move left or right. If we imagine
the horizontal position to correspond to a memory location, this
gives us a hint that list elements may not need to move in memory
throughout the execution, avoiding spurious copying.

4 De-Amortized Banker’s Aggregator (DABA)
This section introduces the De-Amortized Banker’s Aggregator
(DABA). DABA is a SWAG (sliding window aggregator) with worst-
caseO (1) invocations of ⊕ per SWAG operation. It is inspired by the
Okasaki-based algorithms from the previous section. But it does not
need laziness and avoids �ne-grained memory allocation, as well
as spurious copies. DABA is called so because of the ingredients
involved in the algorithm: Amortization looks at the average cost
of an operation over a long period of time. The banker’s method
conceptualizes amortization as money movements between the al-
gorithm and a �ctitious bank. Deamortization is a method that turns
the average-case behavior into the worst-case behavior, usually by
carefully spreading out expensive operations. To aid readability,
we wrote this section to be be understood independently of FOA
and IOA (in case the reader skipped Section 3).
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Figure 8. DABA data structure.

4.1 Chunked-Array Queue
To implement a worst-case O (1) SWAG, DABA needs a worst-case
O (1) FIFO (�rst-in �rst-out) data structure. Furthermore, the FIFO
should avoid �ne-grained memory allocation. As it turns out, such
a FIFO is easy to build using a doubly-linked list of chunks:

[0] [1] [2] [3] [4] [5] [6] [S]

Each chunk is a �xed-size array of elements. The queue starts
possibly in the middle of a chunk, continues through chunks in the
order of forward links, and ends possibly in the middle of a chunk.
Upward arrows in the �gure are pointers to the beginning and the
end of the queue. In addition, there can be pointers to other queue
elements. Such queue pointers are represented by the address of a
chunk and an index into the chunk. To ensure that the end pointer
is well-formed even in the boundary case where the end of the
queue aligns with the end of a chunk, the implementation reserves
a sentinel [S] behind the last queue element. The chunked-array
queue provides the following operations in worst-case O (1) time:
– q.pushBack (v ) inserts element v at the end of queue q.
– q.popFront() evicts the �rst element from queue q.
– p1 ← p2 overwrites pointer p1 with p2, changing p1 to point to

the same element as p2.
– p1 = p2 compares pointers p1 and p2 for equality.
– p + 1 returns a pointer to the next element after p.
– p − 1 returns a pointer to the previous element before p.
– q[p] reads the element of queue q at pointer p.
– q[p]← v overwrites the element of q at pointer p with v .
Notice that the interface here hides the chunking, and the imple-
mentation is imperative, not purely functional. It uses mutating
assignments and in-place updates, so it can avoid spurious copies.
The only memory allocation happens when pushBack needs to
create a new chunk; a chunk is freed when it becomes unused.
Allocation frequency is inversely proportional to chunk size.

Furthermore, we will state DABA’s correctness invariants in
terms of two additional operations (because DABA never calls
them, they do not a�ect the complexity bounds):
– p + i advances p a total of i times (calling +1 i times).
– p1 ≤ p2 returns true if there exists a non-negative integer i such

that p1 + i = p2 and false otherwise.

4.2 DABA Data Structure
DABA uses a data structure consisting of two queues, vals and
aggs, as shown in Figure 8. Both are implemented as chunked-array
queues with several pointers F , L, R, A, B, and E. The pointers are
always ordered as follows:

F ≤ L ≤ R ≤ A ≤ B ≤ E

1 fun Σ⊕F : if (F = B) return 0̄ else return aggs[F]
2 fun Σ⊕B: if (B = E) return 0̄ else return aggs[E - 1]
3 fun Σ⊕L: if (L = R) return 0̄ else return aggs[L]
4 fun Σ⊕R: if (R = A) return 0̄ else return aggs[A - 1]
5 fun Σ⊕A: if (A = B) return 0̄ else return aggs[A]

Figure 9. DABA helper functions.

Queue vals stores the window contents, with the ith oldest value
in FIFO order stored at vi = vals[F + i].

Queue aggs stores partial aggregations over subranges of vals.
Speci�cally, the •− and−• notation in Figure 8 indicates that aggs[•]
holds the monoidal sum of the values above the horizontal line −.
For example, aggs[F ] holds vals[F ] ⊕ . . . ⊕ vals[B − 1]. Each pointer
p corresponds to a sublist lp as shown in Figure 8. For example,
pointer F corresponds to sublist lF . Each list is either aggregated
to the left •− or to the right −•. The direction is carefully chosen to
enable the SWAG operations. The front list lF is aggregated to the
left to facilitate eviction. The back list lB is aggregated to the right
to facilitate insertion. The sub-lists lL , lR , and lA in the middle are
designed to facilitate incremental reversal. Incremental reversal
happens by adjusting the pointers demarcating sublist boundaries
one step at a time. When a pointer moves, an element of aggs
changes membership from one sublist to another and may need to
be updated accordingly.

DABA’s aggs invariants specify the contents of aggs before and
after each SWAG operation. The •− and −• notation in Figure 8
is a graphical depiction of the aggs invariants. Formally, the aggs
invariants are:

∀p ∈ F . . . L − 1 : aggs[p] = vals[p] ⊕ . . . ⊕ vals[B − 1]
and ∀p ∈ L . . .R − 1 : aggs[p] = vals[p] ⊕ . . . ⊕ vals[R − 1]
and ∀p ∈ R . . .A − 1 : aggs[p] = vals[R] ⊕ . . . ⊕ vals[p]
and ∀p ∈ A . . . B − 1 : aggs[p] = vals[p] ⊕ . . . ⊕ vals[B − 1]
and ∀p ∈ B . . . E − 1 : aggs[p] = vals[B] ⊕ . . . ⊕ vals[p]

Figure 9 de�nes helper functions for returning the aggregation
of each of the sub-lists. Each helper function returns the identity
element 0̄ if the corresponding sublist is empty or otherwise reads
the aggregation from the appropriate element of aggs. As Section 4.4
will show, if the window is non-empty, then there is at least one
element between F and L, so Σ⊕F returns the correct value.

4.3 DABA Algorithm
Figure 10 shows the DABA algorithm. Function query just returns
the monoidal sum of the front and back lists. Function insert
pushes a new value and the corresponding aggregation on the back
(lB ) of vals and aggs, then calls fixup. Similarly, function evict
pops one value and the corresponding aggregation from the front
(lF ) of vals and aggs, then calls fixup. Function fixup performs the
incremental reversal of lB into lF . This is the most subtle part of
the DABA algorithm. Before diving into the details of the code, we
will discuss fixup at a higher level using an example.

Figure 11 illustrates how DABA works on the running example
trace from Figure 4. Each state shows the contents of the vals and
aggs queues along with the pointers. For instance, in State a, the
entire window is in the front list lF (shown in light blue), and the
back list lB is empty (B = E; other states show lB in light green).
In State a, the pointers L, R, and A di�er. That means each of the
corresponding sublists lL , lR , and lA are non-empty, and thus, have
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1 fun query()

2 return Σ⊕F ⊕ Σ⊕B
3 fun insert(v)
4 vals.pushBack(v), aggs.pushBack(Σ⊕B ⊕ v)
5 fixup()

6 fun evict()

7 vals.popFront(), aggs.popFront()

8 fixup()

9 fun fixup()

10 if F = B // Singleton case, Figure 12(a)
11 B ← E, A ← E, R ← E, L ← E
12 else

13 if L = B // Flip, Figure 12(b)
14 L ← F, A ← E, B ← E
15 if L = R // Shift, Figure 12(c)
16 A ← A + 1, R ← R + 1, L ← L + 1
17 else // Shrink, Figure 12(d)
18 aggs[L] ← Σ⊕L ⊕ Σ⊕R ⊕ Σ⊕A
19 L ← L + 1
20 aggs[A - 1] ← vals[A - 1] ⊕ Σ⊕A
21 A ← A - 1

Figure 10. DABA algorithm.
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Figure 12. Cases of DABA’s fixup. The top/bottom of each case show the state before/after executing the referenced lines from Figure 10.

their own internal partial aggregation. The direction of the partial
aggregations is as shown in Figure 8.

Each step from one state to the next is annotated with the SWAG
operation and one case of fixup. For instance, Step a→b uses the
evict operation and triggers the shrink case of fixup, shrinking
lL and lR by one element each. Step b→c uses insert and triggers
the shift case of fixup, incrementing pointers L, R, and A. The next
two steps also trigger shift, until the pointers L, R, and A reach B.
Next, Step e→f triggers the �ip case, relabeling the old lF and lB
into the new lL and lR . Next come two more shrinks and two more
shifts. If the trace were to continue, the next step would �ip again.

Generalizing from this concrete example, we discuss the code
of fixup in detail. If the window has at least two elements, in the
long run, the fixup cases form the pattern (shrink+ shift+ �ip)∗.
Figure 12 shows four cases of fixup:

Singleton case: Figure 12(a). If F = B, that means the front list
lF is empty. As Section 4.4 will show, that can only happen if the
back list lB has exactly one element. On a singleton list, there is
no di�erence between aggregating to the left or right. Therefore,
DABA can simply move pointers around to turn lB into lF without
having to modify aggs.
Flip case: Figure 12(b). If F , B but L = B, that means that the
three sublists lL , lR , and lA of lF are all empty. In that case, the
entire lF is aggregated to the left •− and lB is aggregated to the
right −•. So DABA can simply move pointers around to turn lF and
lB into lL and lR , which are aggregated in the same directions.
Shi� case: Figure 12(c). If L , B but L = R, that means that lL
and lR are empty but lA is non-empty. That means that all of lL is
aggregated to the left •−. In other words, the boundary of lA makes
no di�erence for the aggregation, and DABA can increment L, R,
and A without having to modify aggs.
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Shrink case: Figure 12(d). If L , R, that means that lL is non-
empty. As Section 4.4 will show, lL and lR always have the same
length, so lR is non-empty too. DABA shrinks both lL and lR by
one element each. This is the only case that requires modifying
aggs. DABA shrinks lL by incrementing L, thus moving the �rst
element of lL to the front portion of lL ; the new aggs entry for that
element is Σ⊕L ⊕ Σ⊕R ⊕ Σ⊕A . DABA shrinks lR by decrementing A,
thus moving the last element of lR to lA; the new aggs entry for
that element is vals[A − 1] ⊕ Σ⊕A .
We have now described the DABA algorithm; we establish correct-
ness and running time next.

4.4 DABA Theorems
This section states the theorems that DABA is correct and is worst-
case O (1). The theorems depend upon DABA’s size invariants,
which specify the sizes of sublists. The size invariants state that
the window is either empty (|lF | = 0 and |lB | = 0) or the following
two conditions hold:
- First, |lL |+ |lR |+ |lA |+1 = |lF |− |lB |. The left side of this equation

is the number of incremental reversal steps required to shrink
and shift the sublists of lF until they are empty, plus one element
in the front portion of lF to o�er easy access to Σ⊕F . The right
side is the number of available steps until the next reversal must
start, because waiting longer would build up too much reversal
work to handle incrementally.

- Second, |lL | = |lR |. After each �ip, lL and lR start out with the
same size and then shrink at the same pace.

Lemma 4.1. DABA maintains the following size invariants:
(
|lF | = 0 and |lB | = 0

)

or(
|lL | + |lR | + |lA | + 1 = |lF | − |lB | and |lL | = |lR |

)

Theorem 4.2. If the window currently contains valuesv0, . . . ,vn−1,
DABA query returns v0 ⊕ . . . ⊕ vn−1.

Theorem 4.3. DABA invokes ⊕ at most one time per query, four
times per insert, and three times per evict. Furthermore, for non-
empty windows, DABA invokes ⊕ on average 2.5 times per insert
and 1.5 times per evict.

Theorem 4.2 establishes the correctness, proved in Appendix A.
It follows from Theorem 4.3 that each invocation of DABA query,
insert, or evict makes at most O (1) invocations of ⊕. A simple
caching optimization can reduce the number of ⊕ invocations even
further beyond Theorem 4.3 [26].

We further remark that DABA supports variable-sized windows
since all theorems in this section hold irrespective of the order of in-
sertions or evictions. Furthermore, DABA uses in-place update and
simple data structures; the only memory allocation occurs when the
underlying chunked-array queue grows by a chunk. Finally, DABA
requires merely a monoid, whose binary operator ⊕ is associative
but does not need to be commutative or invertible.

5 Experimental Evaluation
Our experimental evaluation has two main purposes: to test whether
the worst-case constant behavior of FOA, IOA, and DABA trans-
lates into consistently low latency and high throughput in practice;
and to determine when the aggregation algorithms are faster than
recalculating an aggregation over a window from scratch.

Operator Average ± standard deviation of latency in cycles

Two-Stacks FOA IOA DABA

Sum 127± 2,980 250± 15,559 1,824± 1,919 193± 113
Max 125± 2,991 332± 15,356 1,831± 2,083 200± 122
ArgMax 136± 3,214 378± 18,693 1,846± 1,925 207± 137
MinCount 154± 4,463 395± 20,150 1,937± 2,103 222± 157
ArithMean 165± 3,740 397± 18,528 1,898± 2,084 237± 149
StdDev 200± 4,099 469± 20,373 1,943± 2,081 274± 160
GeoMean 299± 3,777 484± 18,171 2,055± 2,100 366± 168
Bloom 5,532±298,982 12,394±310,698 21,595±14,691 9,021±4,249

Table 2. Lantencies in processor cycles, from a run with a 214 data
item window over 1 million rounds of insert, evict, query.

Our experiments use up to six di�erent SWAGs: Two-Stacks,
FOA, IOA, DABA, an implementation of the Reactive Aggrega-
tor [27] (Reactive), and recalculating the window from scratch (Re-
calc). Two-Stacks is amortized constant, while FOA, IOA, and
DABA are worst-case constant. Reactive serves as our comparison
against the current state of the art; all operations on it are amortized
O (logn). Recalc is our performance baseline. We implemented FOA
in Standard ML by modifying Okasaki’s own implementation of
his functional real-time queue, and compiled it using the MLton
compiler cloned from GitHub on June 24, 2016. We implemented
all of the other algorithms, including IOA, in C++11, using the g++
compiler version 4.8.3 with optimization level -O3. Our goal was to
make the comparison to Okasaki’s algorithms as fair as possible,
which is why we compare against both FOA and IOA.

Our benchmark driver starts with a ramp-up to grow the window
size to n. Then, it starts measuring performance for a number of
iterations. Each iteration of the driver issues an evict, insert, and
query to the SWAG. Some of the algorithms we evaluate take as
little as 100-200 processor cycles per iteration. Because of this,
we conduct all of our experiments outside of existing streaming
platforms to better isolate and measure performance e�ects. All
of the algorithms can be easily integrated into existing streaming
platforms (see for instance Reactive [27]).

We chose a representative sample of aggregation operators for
our experiments. They range from operators that take a single
instruction (Sum, Max), to operators that take many thousands of
instructions (Bloom), to inherently linear operators (Collect). Our
experimental system runs RedHat 7.2, with Linux kernel version
3.10.0. The processor is an Intel Xeon E5-2680 at 2.7 GHz.

5.1 Latency
The practical bene�t of using an aggregation algorithm with the-
oretical worst-case constant complexity should be tight latency
bounds. For an amortized constant algorithm, such as Two-Stacks,
we expect to see a low average latency, but a high standard deviation
due to periodic high-cost operations. However, for the worst-case
constant algorithms, we expect to see a low average latency and a
low standard deviation. Table 2 shows that our expectations hold
for Two-Stacks and DABA, but not for FOA and IOA. These experi-
ments used a window size of 214 data items over 1 million rounds
of evict, insert, and query over our set of aggregation operators.

Two-Stacks has the lowest average latencies across all aggrega-
tion operators, but also has periodic latency spikes, resulting in
a standard deviation that is between 12–54× the average. DABA
maintains an average latency that is about 20–60% higher than
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Figure 13. Top: Latency experiments. Each graph is a single run with a window of 214 data items. The x-axis is the number of rounds
of evict, insert, query into the experiment, up to 1 million rounds. The y-axis is the number of processor cycles to execute that round
on a log scale. Bottom: Throughput experiments. The x-axis is the window size in number of data items in the SWAG, and the y-axis is
throughput in million data items per second.

Two-Stacks, but its standard deviation is always lower than the
average itself.

FOA’s average latencies are about 1.6–2.8× as expensive as Two-
Stacks, but the standard deviations are as much as 5× higher. FOA,
a worst-case constant algorithm, has latencies signi�cantly higher
than an amortized constant algorithm. That is, even though Two-
Stacks has periodic linear costs, FOA still performs worse. We
attribute this discrepancy to the cost of garbage collection. Our
algorithmic analysis looks at the number of invocations of ⊕, but
does not consider the cost of memory management. In the case
of FOA, this memory management is signi�cant enough that it is
never pro�table to use FOA over an amortized constant algorithm.
IOA also has a high cost due to memory management, which again
is not re�ected in the theoretical analysis: its average latencies are
6–14× those of Two-Stacks. On the other hand, IOA’s standard
deviation is lower than Two-Stacks’, usually within 2×. The only
exception is Bloom: IOA’s standard deviation is about 20× lower.

The top of Figure 13 details the latency behavior for the three
worst-case constant algorithms, FOA, IOA, and DABA. It shows a
latency time-series for a single run with a window size of 214 data
items for three aggregation operators. We chose Sum, GeoMean,
and Bloom to represent cheap, medium, and expensive operators.
The x-axis is the number of evict, insert, and query rounds into
the experiment, and the y-axis is the cost in processor cycles to
execute that round on a log scale.

All three graphs show the same trends and corroborate the av-
erages and standard deviations in Table 2. DABA’s typical cost is
about 10× less than IOA, and its worst cost is usually lower than
IOA’s best. FOA’s typical cost is in the same order of magnitude as

DABA, but it periodically has a cost that is around 40×more expen-
sive. FOA also shows higher average latency near the beginning;
this is caused by the garbage collector ramping up the heap size.

5.2 Throughput
Our throughput experiments, bottom of Figure 13, explore a wide
range of window sizes for the same three aggregation operators.
In all three experiments, we stopped collecting data for Recalc
after a certain window size; it clearly has O (n) behavior, and its
throughput correspondingly trends towards 0.

The general trend is that Two-Stacks maintains the best through-
put, DABA next, and FOA third. While DABA and FOA are both
worst-case constant, the performance di�erence comes from FOA
spending much more time on garbage collection. Reactive, which is
the worst asymptotically after Recalc, is consistently outperformed
by Two-Stacks, DABA and FOA. Surprisingly, Reactive and IOA
show similar trends, despite Reactive being logarithmic and IOA
being worst-case constant.

For Sum and GeoMean, DABA has the curious behavior that its
performance improves up to a window size of 28. This unintuitive
result is caused by the fact that the number of calls to flip scales
down as the window size increases. Only O (1/n) of window opera-
tions invoke flip, so the overall algorithmic complexity including
�ip is O (1 + 1/n). Whether this behavior is clearly visible in the
throughput graph depends on how costly ⊕ is compared to simple
pointer manipulation. For Sum and GeoMean, the manipulation of
the list pointers is comparable to the cost of ⊕. For Bloom, ⊕ is
substantially more expensive than manipulating the list pointers,
so this e�ect is not noticeable.
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Two-Stacks and DABA maintain constant performance at all
window sizes for Sum, but show a slight degradation as the win-
dow sizes approach 220 for GeoMean, and even earlier at 212 for
Bloom. This drop in performance is explained by a larger memory
footprint causing more cache and TLB misses; Sum maintains one
32-bit integer per element, GeoMean maintains a 64-bit �oat and
a 32-bit integer, and Bloom maintains a bitset of 16, 384 bits. This
performance degradation is unavoidable: managing large window
sizes will eventually cause the memory system performance to
dominate the cost of a small number of ⊕ invocations.

However, this e�ect is still more pronounced in FOA and IOA.
Both see a signi�cant drop in performance after 216 for Sum and
GeoMean. Up to this point, however, FOA does not maintain con-
stant performance, and IOA’s absolute performance is similar to that
of a logarithmic algorithm. Both facts are caused by the increased
memory management to support laziness and garbage collection.
FOA fares signi�cantly better as it relies on MLton’s optimized
garbage collector. IOA’s performance for Sum and GeoMean is dom-
inated by memory management—every insert allocates an object,
and every evict deallocates an object. These memory operations
are signi�cantly more expensive than the aggregation operators
themselves. For Bloom, the cost of ⊕ is comparable to the mem-
ory management cost, and the fact that IOA invokes ⊕ a constant
number of times is �nally noticeable. However, Reactive, which is
O (logn), still has either the same or higher throughput than IOA,
even with Bloom. The lesson here is simple: O (1) aggregations is not
enough for scalable performance in practice. E�cient underlying
data structures such as those in DABA are also required.

5.3 Break-Even Points
Table 3 answers the question, at what window size do the SWAGs
become pro�table compared to Recalc? Two-Stacks is amortized
constant, and FOA, IOA, and DABA are worst-case constant, but in
practice, the actual constants matter.

Our results show that the break-even points of Two-Stacks, FOA,
and DABA are low enough to use over Recalc for almost all win-
dow sizes. The break-even points for IOA, however, are similar
to Reactive even though IOA is constant and Reactive is logarith-
mic. The break-even experiments look at average execution time.
Two-Stacks, with amortized O (1) time, outperforms all others.

Reactive performs O (logn) invocations of ⊕, and it must main-
tain a tree structure, so its break-even points are between 10–100×
higher than those of Two-Stacks, FOA, and DABA. The one excep-
tion is Bloom, a much more expensive operator. We note that the
break-even points for Reactive are higher than reported in prior
work [27]. The implementations are di�erent; in particular, our
baseline in this paper, Recalc, uses the most e�cient recalculation
methods we could conceive, while the baseline in the prior paper
was what shipped in IBM Streams.

The one exception to these trends is Collect, which is a special
case. Collect returns the entire window as a list of size n; it is
inherently O (n). The Recalc version of Collect allocates one list
and inserts n elements, taking O (n) time. For Reactive, Two-Stacks,
FOA, IOA, and DABA, ⊕ must create a new temporary list on each
invocation, and copy the elements from each operand, taking O (n)
time. That means all of these algorithms are linear-time for Collect,
with Recalc having the lowest overheads in total.

Operator Window size break-even point

Reactive Two-Stacks FOA IOA DABA

Sum 1,024 32 128 1,024 112
Max 1,024 28 112 1,024 64
ArgMax 512 28 112 512 64
MinCount 512 28 64 1,024 48
ArithMean 1,024 32 128 1,024 112
StdDev 1,024 32 112 1,024 64
GeoMean 16 2 4 16 4
Bloom 16 12 28 48 28
Collect never never never never never

Table 3. Approximate break-even points. Each entry in the table
is the size of the window where that aggregation algorithm started
being pro�table with that aggregation operator, as compared to
recalculating the entire window from scratch.

5.4 Result Summary
DABA’s theoretic worst-caseO (1) cost is a signi�cant improvement
over Reactive’s amortized O (logn) behavior. Our results show that
this improvement holds up in practice for both latency and through-
put. Our results also show that while DABA has the same theoretic
worst-case O (1) cost as FOA and IOA, it is both faster and has
smaller latency spikes in practice. This di�erence in actual perfor-
mance is caused by FOA and IOA relying on garbage collection
and reference counting. Overall, DABA is best for latency, and
Two-Stacks is best for throughput, with DABA a close second.

6 Related Work
As before, let n be the number of elements in the window and ⊕
the operator that combines two partial aggregation results.

In the academic literature, the fastest sliding-window aggrega-
tion algorithms use balanced trees [5, 20, 27, 29]. The leaves hold
input values and the parent nodes combine the aggregates of their
children. When the tree is balanced, it can support the SWAG
operations with O (logn) invocations of ⊕. The di�culty is keep-
ing the tree balanced while keeping the overhead low, especially
in the presence of variable-sized windows. Like our algorithms,
state-of-the-art sliding window aggregation via balanced trees sup-
ports non-invertible and non-commutative ⊕ operators. They use
binary trees, leading to a roughly 2× space overhead, same as in
our algorithms. However, our algorithms improve over the time
complexity of balanced trees, from average-case logarithmic to
worst-case constant.

While the best SWAG algorithms published in papers use loga-
rithmic time, the ideas for an amortized constant-time approach
appeared on Stack Over�ow. Skeet proposes using a parallel stack
of minima to implement a stack supporting push , pop, and min in
O (1) time [24]. However, a stack is LIFO, but sliding window aggre-
gation is FIFO. To get a FIFO queue supporting insert, evict, and
min inO (1) time, adamax uses two stacks to implement a queue [2].
This O (1) time complexity holds in the average case, but whenever
the front stack is empty, evict requires anO (n) reversal of the back
stack. While adamax posted the idea for the Two-Stacks algorithm,
we implemented it generally for any monoid (adamax discussed
min only; in the case of a non-commutative monoid, one must be
careful about aggregation order); and we carefully evaluated its
performance. Unlike Two-Stacks, our algorithms in this paper are
not just amortized O (1), but worst-case O (1).
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Real-time queues are FIFO data structures that support insert
and evict in worst-case O (1) time but lack aggregation. Hood and
Melville present a real-time queue using LISP lists [14], which are
mutable LIFO data structures with per-element objects and pointers.
They use two lists to implement a queue, and for worst-case O (1)
time, they trigger reversal early, keeping a duplicate copy of the
front list while reversal is in progress. Okasaki presents a real-
time queue that uses immutable lists with per-element objects and
pointers, and in addition, needs support for lazy evaluation [22].
Like Hood and Melville, Okasaki uses two lists and reverses early,
but his queue is persistent and does not keep a duplicate copy of
the front list. Our FOA algorithm augments Okasaki’s queue with
aggregation. We show that aggregation is possible because when
constructing a lazy list, the corresponding aggregation is eagerly
known without having to force any part of a lazy list. Our IOA
algorithm is like FOA, but needs no language-level support for lazy
evaluation. And our DABA algorithm uses similar basic ideas, but
is re-invented from the ground up to avoid lazy evaluation and
per-element objects and pointers. Furthermore, DABA is easy to
implement in mainstream languages like C++ or Java. All three of
our algorithms use worst-case O (1) time like real-time queues, but
unlike real-time queues, also support aggregation.

Coarse-grained windows reduce the space required for sliding
window aggregation [17, 19]. In the past, these space savings also
improved the time complexity. For example, reducing the window
size from n elements to b batches reduces the time complexity
of balanced tree algorithms from O (logn) to O (logb). However,
coarse-grained windows make no di�erence to the time complexity
of our algorithms in this paper: being worst-case constant time
makes the window size n irrelevant. That said, the algorithms in
this paper are easy to combine with coarse-grained windows, which
helps if space savings are important in their own right.

Shared sliding window aggregation optimizes for the case where
many windows over the same stream are being aggregated simul-
taneously. The B-Int algorithm shares windows of di�erent sizes,
answering queries in O (logn) time [5]. The paired-windows algo-
rithm shares windows of di�erent sizes and granularities, answer-
ing queries in O (b) time, where b is the least common number of
batches [17]. DABA can share its vals queue for di�erent window
sizes and for di�erent aggregation operations. However, it is an
open problem whether more aggressive sharing can be done in
better than the O (logn) time complexity of the B-Int algorithm [5].

Non-FIFO sliding window aggregation tackles the case where
the nominal timestamp of stream data items is inconsistent with
their actual arrival time. Srivastava and Widom propose handling
this with a holding bu�er for ordering input elements before they
enter the window [25]. This approach is designed for use-cases
where disorder is mostly small and where higher latencies are
acceptable. DABA can easily be used after such a holding bu�er.
Krishnamurthy et al. propose pre-aggregating each data source
separately and consolidating partial aggregation results as late as
possible when doing an actual query [16]. This approach is designed
for use-cases where data sources are internally ordered but can
have large skew against each other. DABA can easily be used on
the individual ordered data streams before consolidation.

Parallelism is essential for obtaining high performance in modern
streaming systems [1, 3, 18, 23, 28, 31]. Using key-based partition-
ing, multiple replicas of expensive operators can run in parallel.
Sliding-window aggregation is often done with partitioning, in

which case it is easy to parallelize. On the other hand, our DABA
algorithm makes sliding-window aggregation so fast that other
operators in the stream graph are more likely to become the bot-
tleneck. Running DABA on fewer cores and hosts frees up those
resources for other, more expensive, parts of the stream graph.

7 Conclusion
This paper presented DABA, a new algorithm for incremental
sliding-window aggregation. DABA can maintain aggregation for
any monoid, using its binary associative operator ⊕ to aggregate
the window contents. DABA has several desirable properties. It
only requires an associative monoid (no need for commutativity
nor invertibility). DABA is the �rst sliding-window aggregation
algorithm that only requires O (1) invocations of ⊕ in the worst
case for each insert, evict, or query invocation, irrespective of
the current window size. DABA uses O (n) space, where n is the
window size. DABA supports dynamically-sized windows, where
the window size �uctuates throughout the execution, for instance,
due to a variable inter-arrival rate of stream data items. DABA is
built on a simple �at data structure, thus avoiding memory-copy
or allocation churn, as well as avoiding excessive pointer chasing.
Our experiments demonstrate that DABA performs well compared
to other sliding-window aggregation algorithms.
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A Proofs
Proof of Lemma 3.1. The only lazy argument is the ` argument to
cons. Line 19 of Figure 5 is the only case where that argument is
an expression. However, Line 19 can only be reached by calling
rot (in either Line 9 or Line 19). The algorithm only reaches Line 9
when N is empty, and thus, any previous suspended invocation of
rot have been forced, and Line 10 puts the new rot in list F . A rot
produced from Line 19 requires consuming a previous rot call in
the same list, i.e., also F . �

Proof of Lemma 4.1. Using Hoare logic, the start of insert follows:
3 fun insert(v)

{ |lF | = 0 ∧ |lB | = 0 ∨ |lL | + |lR | + |lA | + 1 = |lF | − |lB | ∧ |lL | = |lR | }
4 vals.pushBack(v), aggs.pushBack(Σ⊕B ⊕ v)

{ |lF | = 0 ∧ |lB | = 1 ∨ |lL | + |lR | + |lA | = |lF | − |lB | ∧ |lL | = |lR | }
5 fixup()

Since evict can only be called when the window is non-empty,
using Hoare logic, the start of evict behaves as follows:

6 fun evict()

{ |lL | + |lR | + |lA | + 1 = |lF | − |lB | ∧ |lL | = |lR | }
7 vals.popFront(), aggs.popFront()

{ |lL | + |lR | + |lA | = |lF | − |lB | ∧ |lL | = |lR | }
8 fixup()

That means that when either insert or evict calls fixup, the fol-
lowing precondition holds:

|lF | = 0 ∧ |lB | = 1 ∨ |lL | + |lR | + |lA | = |lF | − |lB | ∧ |lL | = |lR |
What remains to be shown is that fixup �xes up the size invariants
again. This is shown in the Hoare logic proof below. Numbered
lines are from Figure 10; unnumbered are assertions.

9 fun fixup()

{ |lF | = 0 ∧ |lB | = 1 ∨ |lL | + |lR | + |lA | = |lF | − |lB | ∧ |lL | = |lR | }
10 if F = B // Singleton case, Figure 12(a)

{ |lF | = 0 ∧ |lB | = 1}
11 B ← E, A ← E, R ← E, L ← E

{ |lL | + |lR | + |lA | + 1 = |lF | ∧ |lB | = 0 ∧ |lL | = 0 ∧ |lR | = 0}
12 else

{ |lL | + |lR | + |lA | = |lF | − |lB | ∧ |lL | = |lR | }
13 if L = B // Flip, Figure 12(b)

{ |lL | + |lR | + |lA | = 0 ∧ |lF | = |lB | ∧ |lL | = 0 ∧ |lR | = 0}
14 L ← F, A ← E, B ← E

{ |lL | + |lR | + |lA | = |lF | ∧ |lB | = 0 ∧ |lL | = |lR | }
15 if L = R // Shift, Figure 12(c)

{ |lL | + |lR | + |lA | = |lF | − |lB | ∧ |lL | = 0 ∧ |lR | = 0 ∧ |lA | > 0}
16 A ← A + 1, R ← R + 1, L ← L + 1

{ |lL | + |lR | + |lA | + 1 = |lF | − |lB | ∧ |lL | = 0 ∧ |lR | = 0}
17 else // Shrink, Figure 12(d)

{ |lL | + |lR | + |lA | = |lF | − |lB | ∧ |lL | = |lR | ∧ |lL | > 0}
18 aggs[L] ← Σ⊕L ⊕ Σ⊕R ⊕ Σ⊕A
19 L ← L + 1

{ |lL | + |lR | + |lA | + 1 = |lF | − |lB | ∧ |lL | + 1 = |lR | }
20 aggs[A - 1] ← vals[A - 1] ⊕ Σ⊕A
21 A ← A - 1

{ |lL | + |lR | + |lA | + 1 = |lF | − |lB | ∧ |lL | = |lR | }
{ |lF | = 0 ∧ |lB | = 0 ∨ |lL | + |lR | + |lA | + 1 = |lF | − |lB | ∧ |lL | = |lR | }

�

Proof of Theorem 4.2. To show query returns v0 ⊕ . . . ⊕ vn−1, we
show that Σ⊕F returns the sum of lF and Σ⊕B returns the sum of lB .
The function Σ⊕F returns vals[F ] ⊕ . . . ⊕ vals[B − 1] because of the
aggs invariants and because if lF is non-empty, the front portion
of lF has at least one element (because if lF is non-empty then
|lF | ≥ |lF | − |lB | = |lL | + |lR | + |lA | + 1, see Lemma 4.1). The func-
tion Σ⊕B returns vals[B] ⊕ . . . ⊕ vals[E − 1] because of the aggs in-
variants. Now the aggs invariants hold because both insert and
fixup correctly maintain the aggs queue. In particular, fixup uses
the cases in Figure 12, heeding the size invariants (Lemma 4.1). �

Proof of Theorem 4.3. The algorithm has no loops nor recursion.
The worst-case numbers can be seen directly from the invocations
of ⊕ in Fig 10. For average-case numbers, consider the sequence
of operations from a �ip to the next. Immediately following �ip,
lR is non-empty and lA is empty. As long as lR is non-empty, each
subsequent insert or evict operation triggers a shrink, shrinking
lR by one and invokes ⊕ thrice. When lR is empty, lA has exactly
the size that lR had at the previous �ip. Each subsequent insert
or evict operation triggers a shift that shrinks lA by one without
invoking ⊕. The next �ip happens when lA is empty. Hence, there
is an equal number of shrink and shift cases, so that fixup invokes
⊕ three times half of the time and does not invoke ⊕ half of the
time. This averages out to 1.5 ⊕-invocation per fixup, and thus, 2.5
⊕-invocation per insert and 1.5 ⊕-invocation per evict. �
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