
AQuA: Adaptive Quality Analytics

Wei Zhang
IBM Research

weiz@us.ibm.com

Martin Hirzel
IBM Research

hirzel@us.ibm.com

David Grove
IBM Research

groved@us.ibm.com

ABSTRACT
Event-processing systems can support high-quality reactions
to events by providing context to the event agents. When
this context consists of a large amount of data, it helps to
train an analytic model for it. In a continuously running so-
lution, this model must be kept up-to-date, otherwise quality
degrades. Unfortunately, ripple-through effects make train-
ing (whether from scratch or incremental) expensive. This
paper tackles the problem of keeping training cost low and
model quality high. We propose AQuA, a quality-directed
adaptive analytics retraining framework. AQuA incremen-
tally tracks model quality and only retrains when neces-
sary. AQuA can identify both gradual and abrupt model
drift. We implement several retraining strategies in AQuA,
and find that a sliding-window strategy consistently out-
performs the rest. AQuA is simple to implement over off-
the-shelf big-data platforms. We evaluate AQuA on two
real-world datasets and three widely-used machine learning
algorithms, and show that AQuA effectively balances model
quality against training effort.

CCS Concepts
•Applied computing → Event-driven architectures;

Keywords
Events; context; machine learning

1. INTRODUCTION
Event processing systems must take context into consid-

eration to find the best reaction to events. This context
often consists of a large amount of data, and must be ana-
lyzed by machine-learning analytics to make it actionable.
For example, given the input event “consumer visits store”,
the event processor should make a product recommendation
(e.g., which movie to rent, which book to buy, or which
restaurant to dine at). The context for this prediction is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DEBS ’16, June 20-24, 2016, Irvine, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4021-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2933267.2933309

D Model(D)

Event

Processor

Event with

example

Event
requiring
prediction

training

prediction
gathering

experience

contextual event handling

Event
based on
prediction

Figure 1: Event processing with analytics in META.

what similar consumers liked, and the machine-learning prob-
lem is collaborative filtering. One approach to building a
context-aware event processor is to hand-integrate separate
systems for event processing and analytics. Unfortunately,
that approach is brittle, involves a slow data copy, and leads
to stale (and hence low-quality) models.

This paper grew out of IBM’s “Middleware for Events,
Transactions, and Analytics”project, or META for short [2],
which integrates event processing with analytics. Since the
middleware is pre-integrated, solution developers need not
integrate by hand, leading to cheaper, more robust solutions.
Furthermore, since the analytics happen in-situ, they need
not copy the data and can keep models fresher. Figure 1
shows how META works. Given an event requiring predic-
tion (such as “consumer visits store”), the event processor
consults a pre-computed analytic model to make a predic-
tion, which is reflected in the output event. Given an event
with an example (such as “consumer rates purchase”), the
event processor updates the stored training data D. Occa-
sionally, the analytics train a new model Model(D).

Given a middleware such as META, the next problem is
how to keep the model quality high and the training cost low.
When events with new examples ∆ arrive, the old model,
Model(D), diverges from the current model, Model(D ±∆).
For example, in a product-recommendation system, cus-
tomers’ taste may change or new products may be released;
in either case, predictions made on a stale model are likely
to have low quality. One simple approach is to retrain
on a fixed schedule; unfortunately, that yields an arbitrary
cost/quality trade-off that we found is usually suboptimal.
A more sophisticated approach that received much recent at-
tention from the systems community is incremental analyt-
ics [4, 5, 7, 20, 24, 30, 34, 35, 38]. Unfortunately, many an-
alytics are not available in incremental form; ripple-through
effects can cause incremental analytics to have high cost;
and the resulting model is not guaranteed to have the best

169

D ± ∆
D

(training data)

training

update (± ∆)

training

Model(D ± ∆)Model(D)

evaluation

evaluate(

Model(D), T ± ∆))

evaluate(

Model(D), T)

incremental

evaluation

(cheap!)

incremental

training

(expensive!)

Figure 2: Incremental training vs. incremental evaluation.

quality when obsolete examples remain in the training data.
This paper proposes a complementary approach called

AQuA: Adaptive-Quality Analytics. Rather than doing in-
cremental training, it incrementally evaluates model qual-
ity. That is simple, inexpensive, and makes it possible to
meet a user-specified quality threshold. Figure 2 depicts the
AQuA approach and contrasts it with incremental analytics.
Given the initial training data D, a machine-learning algo-
rithm constructs an initial model Model(D). When an up-
date changes the training data to D ±∆, there are two ap-
proaches for constructing an updated model Model(D ±∆):
either retraining from scratch (bottom right) or incremental
training (middle). When D is large, retraining from scratch
takes minutes or even hours.

Unfortunately, incremental training is also asymptotically
expensive: even when the update ∆ is small, subtle changes
can ripple through the entire model, and retraining cost de-
pends on the size of D, not ∆. Furthermore, in the presence
of gradual or abrupt model drift, it is not always desirable to
incrementally update the model without discarding (some)
old data. We advocate continuous incremental evaluation,
but retraining only on-demand, e.g., when model quality
drops below a threshold.

AQuA applies to popular algorithms for common ma-
chine learning problems. We evaluated it on ALSWR [45]
for collaborative filtering, KMeans [23] for clustering, and
CNB [36] for classification on real-world datasets. This pa-
per makes the following contributions:

• A novel unified approach for incremental evaluation
of different machine learning algorithms in an event-
processing setting.
• A retraining strategy based on sliding windows that

consistently outperforms other strategies, is easy to
implement, and requires no change to the underlying
machine-learning infrastructure.
• An approach for handling (some forms of) abrupt model

drift by detecting the change point and using only data
from after that point for retraining.

Overall, this paper observes that incremental evaluation is
faster than incremental training, and enables cheaply main-
taining a high-quality model over changing data. And a
high-quality model enables an event processing system to
take better actions.

2. BACKGROUND
This section reviews machine-learning concepts and how

they apply in an event-processing context. Definitions are in
bold and referenced in italics. Many definitions are adopted
from a standard machine-learning text book [32].

2.1 Machine Learning Basics
Example. Data instance used for training or evaluation,
e.g., a triple 〈consumer, movie, rating〉. Typically arrives in
the system as part of an incoming event.
Features. The set of attributes, often represented as a vec-
tor, associated with an example, e.g., a consumer feature
vector or a movie feature vector.
Label. Value or category for an example, e.g., a movie rat-
ing. Helps event processing system to determine best action.
Supervised learning. The learner sees labeled examples
and predicts labels for unseen unlabeled examples. Col-
laborative filtering and classification are supervised learning
problems.
Unsupervised learning. The learner sees unlabeled ex-
amples and predicts labels for unseen unlabeled examples.
Clustering is an unsupervised learning problem.
Training data D. Examples used to train a model.
Test data T . Examples used to evaluate the quality of a
model. For example, in collaborative filtering, one can use
some labeled movie ratings as training data and hold out the
rest as test data. In unsupervised learning, the test data and
the training data are the same.
Loss function. A function that measures the difference, or
loss, between a predicted label and a true label. A typical
loss function is RMSE (root mean squared error).
Cost function C. A function used in a machine learning
algorithm to guide its progress. Most algorithms solve the
optimization problem argminΘ C(Θ, D), where C is the cost
function, D is the given training data, and Θ is the solution
to this optimization problem. For example, KMeans mini-
mizes distances between points and cluster centroids.
Model Θ. Parameters that minimize the cost function.
Predict. Apply a model on an unlabeled example to yield a
label. In an event-processing system, prediction must occur
at low latency, since the label informs the output action.
Train. Find a model Θ that minimizes the cost function.
In an event-processing system, training is typically a back-
ground process that proceeds concurrently with handling
events in the foreground.
Training algorithm. An algorithm used to train a model,
e.g., ALSWR for collaborative filtering, KMeans for cluster-
ing, or CNB for classification.1

Problem. A machine learning problem consists of training
a model to make predictions on unseen examples.
Evaluation. Evaluation of a supervised learning model
means applying the loss function to the model and the test
data. Evaluation of an unsupervised learning model is more
difficult, since generally no labeled examples are available [32].
However, since the training algorithm considers one model
superior to another if it yields a smaller cost value, the cost
function can serve as an evaluation metric.
Quality. The result of evaluating a model. This paper nor-
malizes quality so higher values indicate better quality.

1This paper assumes an algorithm has been selected and
configured for each problem. Algorithm selection and hyper-
parameter search are out of scope of this paper.

170

2.2 Adaptive Analytics
Adaptive analytics are only necessary when model qual-

ity degrades on new data. If the quality of an old model on
new examples did not degrade, then the system could sim-
ply continue to use the old model.
New training data ∆. Examples that become available
only after the initial model is trained. In an event-processing
context, these examples come from events that arrive after
the latest round of training.
Model drift. The phenomenon that an old model does not
accurately predict new data. Model drift happens when new
training examples cause models to change, either gradually
or abruptly. One example for gradual model drift for collab-
orative filtering is when consumers rate new movies. One
example for abrupt model drift for collaborative filtering is
when many consumers suddenly change their taste. But the
point is that there are many possible causes for model drift;
rather than tailoring a solution for any one particular cause,
we want to maintain a high-quality model no matter the na-
ture of drift.
Incremental training. Update the model to reflect new
training data ∆. This is a popular approach in the literature;
the ∆ typically consists of a small batch of new examples.
Incremental evaluation. For supervised learning, given a
new labeled example, make a prediction and incrementally
update the loss function. For unsupervised learning, make a
prediction and incrementally update the cost function. This
is the complementary approach we advocate; since evalua-
tion is usually easy to incrementalize, doing it one example
at a time incurs no performance penalty.

3. DESIGN AND IMPLEMENTATION
Based on the terminology from the previous section, this

section explains AQuA’s novel approach for implementing
incremental evaluation and quality-directed retraining. One
of the design goals was that AQuA should work with the
implementations of machine-learning algorithms in off-the-
shelf frameworks. For our prototype implementation, we
chose Mahout [26] as the framework, as it supports a wide
range of algorithms and is a stable big-data analytics en-
gine. This section describes the interfaces for wrapping Ma-
hout as a black-box. AQuA exploits the fact that for most
machine-learning problems, the loss function (for unsuper-
vised learning) or cost function (for supervised learning) can
be incrementalized. Details for the incremental loss or cost
functions are in Section 4.

3.1 AQuA Overall Workflow
Figure 3 presents the overall workflow of AQuA, assuming

an initial model has been trained and evaluated. When an
incoming event delivers a new training example ∆, AQuA
performs several steps.

Step 1. Add ∆ to the cache. Section 3.2.3 explains the
cache design in detail. For unsupervised learning, ∆
goes in the training cache. For supervised learning,
∆ goes in an evaluation cache with a user-specified
probability p and in the training cache otherwise.

Step 2. Incrementally evaluate the model. First, AQuA
does a prediction for ∆. Second, AQuA incrementally
updates the loss function for supervised learning or the
cost function for unsupervised learning.

Step 3. Check a retraining condition to decide whether to
train a new model. AQuA implements several retrain-
ing conditions, discussed below in Section 3.2.2.

Step 4. Select retraining data, if retrain is needed. AQuA
implements several retraining data selection strategies,
discussed below in Section 3.2.2.

Step 5. Retrain model using selected training data, and
load the new model for future predictions.

None of these steps are on the critical path for event-
processing itself: if the event processor needs a prediction,
it can obtain that based on the existing model. However,
most of these steps are low-latency, and can therefore be
performed in-line with processing an event with example.
The only exception is Step 5, which may be slow, and should
therefore run as a background process, decoupled from event
processing.

3.2 AQuA Interfaces
This section describes our interfaces to algorithms and

data stores, and our suite of retraining strategies.

3.2.1 Algorithms Interface
The AquaAlgo class is the interface each machine learning

algorithm should implement to take advantage of quality-
directed adaptive analytic retraining. The methods defined
in this class are train, predict, evaluate, and incremental-
Evaluate. We implemented the corresponding functionality
for ALSWR, KMeans, and CNB. Since such methods are
central to any given machine learning algorithm, any ma-
chine learning frameworks should have them in place or be
easy to modify to add such methods.

In addition, AquaAlgo normalizes a model’s running qual-
ity against its initial quality. Higher normalized quality is
better. AquaAlgo uses the normalized quality for retraining
decisions.

3.2.2 Retraining Strategies
AQuA implements four retrain strategies, described in

Figure 4. Column Strategy lists the strategy names. Columns
Step 3 and Step 4 describe the retrain condition and the
training data selection for the corresponding steps from Fig-
ure 3. Strategy Fix is quality-oblivious and serves as a base-
line, emulating a system with periodic retraining but with-
out AQuA. The other strategies are quality-directed and ex-
plore different options for which training data to use: All
uses all data, Gen uses data since the last retraining, and
Sw uses a sliding window w of the most recent data.

A quality threshold can be too high to maintain, so fre-
quent retraining would be incurred. To alleviate this prob-
lem, AQuA also provides a parameter inertia window for
users to specify. AQuA will hold at least inertia window
data items before a retraining. That means that quality-
directed strategies effectively fall back to the fixed-size strat-
egy when the quality threshold is unrealistically high. The
inertia window prevents AQuA from overreacting to early
quality instability. Model quality is reset after retraining,
and when evaluated on only few examples, model quality is
not representative.

3.2.3 Store Interface
AQuA uses a store interface to make it possible to reuse an

unmodified existing analytics framework while at the same
time supporting all retraining strategies from Figure 4. We

171

Step 3:

should retrain

?

Step 4: select retraining data

Step 1: cache example ∆

Step 2: inc-eval model

Step 5: retrain model

yes

no

Figure 3: AQuA workflow.

Strategy Retrain condition for Step 3 Training data for Step 4
Fix When the number of examples

since the last retraining exceeds
a fixed threshold, irrespective of
quality.

Training data collected since
last retraining.

All Model quality falls below a
threshold.

All training data since the
beginning of time.

Gen:
generation.

Model quality falls below a
threshold.

Training data since the last
retraining.

Sw:
sliding window.

Model quality falls below a
threshold.

A fixed amount (w) of the
most recent training data.

Figure 4: Retraining strategies.

AQuA Store Interface

HDFS (or other store layer)

Meta-data

• Generations

• Statistics

add flush selectTrainingData retrain

Examples

cache

Mahout

(or other

analytics

framework)

Instance of AquaAlgo subclass

Figure 5: AQuA store interface.

have implemented this store interface to work with HDFS,
because it is the underlying file system for Mahout and many
other machine learning frameworks (e.g., Spark MLlib [40]).
But the design is independent from the underlying store
layer and can be easily implemented for a different one.

Figure 5 illustrates AQuA’s store interface. When an algo-
rithm adds a new training example, it gets cached in mem-
ory. The cache gets flushed to a new HDFS file when its
size reaches a threshold or when AquaAlgo explicitly calls
flush before retraining. Each flush goes to a unique file. In
addition, the store interface manages meta-data for train-
ing and test data by maintaining two data structures. The
generations list keeps track of flushed HDFS files between
retrainings. The statistics record the locations of flushed
HDFS files and how many examples each file contains.

When AquaAlgo initiates retraining, it first calls select-
TrainingData to obtain a list of file names from the AQuA
store interface according to the strategy in Figure 4. Then,
it asks the off-the-shelf analytics framework to train on those
files.

3.3 Abrupt Model Drift
The workflow and retraining strategies discussed so far are

designed to deal well with gradual model drift, where the
model slowly diverges due to the arrival of new data. How-
ever, additional work is required to deal well with abrupt
model drift, where the quality of the old model suddenly
drops in quality because of a fundamental change. This sec-
tion defines additional quality metrics, and uses them for
detecting and reacting to abrupt model drift.

3.3.1 Quality Metrics
Discussions of quality so far referred to overall quality,

which is based on all examples used during incremental eval-
uation, with uniform weight.

To characterize how a model performs on more recent
data, we use a widely-known technique in statistical sci-
ence, the Exponential Moving Average (EMA). Consider a
time series Q = {q1, . . . , qn}, where qi is the model quality
evaluated by using the i-th example. Then, the following
equations define the EMA α of model quality:

α1 = q1 αi+1 = αi · (1− p) + qi+1 · p

The older an example, the less it contributes to the EMA.
In theory, p can be set between 0 and 1; in practice, p is
usually below 0.1, because a larger p assigns too much weight
to the recent data. However, the above equations are not
practical for a long history. When p = 0.05, an example of
age 15, 000 has weight 0.9515,000, which is indistinguishable
from 0 using double floating point precision. Thus, we divide
the test data into consecutive chunks of size s and record
the model quality evaluated by each chunk, which we call
chunk quality, CQ = {cq1, . . . , cqj}, where s · j = n. We use
CQ instead of Q to calculate a model’s EMA, which we call
EMA quality. Incremental updates to overall quality, chunk
quality, and EMA quality have time complexity O(1).

3.3.2 Handling Abrupt Model Drift
We use a simple heuristic to detect abrupt model drift. If

EMA quality drops at least 10% below overall quality, we
detect a change point. In the hundreds of experiments we
conducted on real-world dataset with different values for p
(EMA probability) and s (EMA chunk size), we find this
heuristic to be effective: it has neither false positives nor
false negatives.

When AQuA detects a change point, a naive approach
would be to immediately trigger a retraining. However, this
is problematic: either the retraining uses old data from be-
fore the change point, in which case it will produce a model
that is instantly stale; or the retraining uses only new data
from after the change point, in which case it may over-fit
since there is not enough such data available yet. To avoid
this problem, AQuA waits for a user-specified number of ad-
ditional incoming examples before it starts retraining, using

172

Step A2:

is abrupt-flag

set?

Step A3:

hold enough

data?

Step A5: incrementally update

overall quality and EMA quality

Step A6:

abrupt drift

?

Step A7: set

abrupt-flag

yes

no

no no

yes yes

Step A4: retrain on hold-

data and reset abrupt-flag

Step A8: go to Step 3

of AQuA work-flow

Step A1: cache example ∆

Figure 6: Abrupt model drift detection workflow.

only training data from after the change point. The data
AQuA holds before it starts retraining is called hold-data.

Abrupt model drift handling is orthogonal to the retrain-
ing strategies described in Section 3.2.2. That is, only when
an abrupt model drift is detected, AQuA retrains the model
using the hold-data. One can freely choose different retrain-
ing strategies (e.g., S15: sliding window of width w = 15) to
handle gradual model drift. Figure 6 presents the workflow
of abrupt model drift detection:

Step A1. Add ∆ to the cache, same as Step 1 of Figure 3.
Step A2. Check if the abrupt model drift flag is set true.
Step A3. If the check from Step A2 is true, check if enough

training data is held since the change point was de-
tected.

Step A4. If there is enough training data, then retrain on
the hold-data and reset the abrupt model drift flag
back to false.

Step A5. Incrementally update overall quality and EMA
quality.

Step A6. Check if EMA quality is 10% lower than the over-
all quality to detect the abrupt model change point.

Step A7. If the check from Step A6 is true, set the abrupt
model change flag to be true, and return.

Step A8. Jump to Step 3 of Figure 3 to detect gradual
model drift, if any.

With the exception of Step A4, executing the workflow
incurs only a small latency. It is designed to run in-line with
the processing of each event with example. The workflow
maintains state (the abrupt-flag) from one event-triggered
execution to the next.

Overall, this section presented our AQuA approach for
maintaining a high-quality analytic model during event pro-
cessing, as well as a set of pluggable retraining strategies for
handling both gradual and abrupt model drift. Next, we
will look at a set of pluggable machine learning algorithms
that work with AQuA.

4. MACHINE LEARNING ALGORITHMS
AQuA works for any concrete machine learning algorithm

that can support prediction, non-incremental training, and
both non-incremental and incremental variants of evaluation

(see Section 3.2.1). This section discusses how to support
those functions for three representative machine learning al-
gorithms ALSWR, KMeans, and CNB. We chose these three
algorithms to cover a diverse set of machine learning prob-
lems; AQuA also works for other algorithms not discussed
here. Popular machine learning frameworks provide off-
the-shelf implementations of prediction and non-incremental
training. On the other hand, the description of incremental
evaluation is a novel contribution of this section.

4.1 ALSWR
ALSWR (Alternating-Least-Squares with Weighted-λ-Re-

gularization [45]) is a widely-used algorithm for collaborative
filtering. Collaborative filtering is the following supervised
learning problem: given ratings by consumers for some prod-
ucts, predict ratings for other products. The intuition for
solving this problem is that known ratings from one con-
sumer can predict unknown ratings from another consumer
if the two consumers are similar in their known ratings.

A sample use case for collaborative filtering is for product
recommendations, for instance, to recommend a movie that
similar consumers have rated highly but that the consumer
has not yet watched. Cast in terms of Figure 1, that means
the event requiring prediction occurs when a consumer asks
for a recommendation, and the event with example occurs
when a consumer rates a product.

In the context of an event processing system, a batch ∆ of
new examples consists of new ratings by consumers for prod-
ucts. The word collaborative in collaborative filtering refers
to the fact that these specific examples also predict ratings
for other, similar, consumers and products. Therefore, an
incremental training algorithm would have to update the
model for those other consumers as well, which may affect
even more consumers, and can eventually ripple through the
entire population. Therefore, incremental training for col-
laborative filtering requires work proportional to the size |D|
of the training data set, not just the amount |∆| of new data.

Evaluation for ALSWR consists of computing the root
mean squared error, or RMSE. Let error(t) be the error for
one example t, defined as |t.rating −Model(D).predict(t)|.
Then evaluation for the entire test data T uses the formula:

evaluate(Model(D), T) =

√∑
t∈T error(t)2

|T | (1)

For incremental evaluation, we separately maintain the run-
ning total for sum =

∑
t∈T error(t)2 and for count = |T |

while examples trickle in one event at a time. Given an in-
coming event with a new example t′, incremental evaluation
simply updates sum += error(t′)2 and count += 1. That
means that after several new examples ∆, the current evalu-
ation is simply evaluate(Model(D), T ±∆) =

√
sum/count .

Incremental evaluation requires only |∆| steps. That means
that for ALSWR, if |∆| � |D|, incremental evaluation is
much faster than incremental training.

4.2 KMeans
KMeans [23] is a widely-used algorithm for clustering.

Clustering is the following unsupervised learning problem:
given a set D of examples with feature vectors, find subsets
(clusters) whose feature vectors are similar. The KMeans
algorithm starts by randomly picking k examples as cluster
centroids. Then it repeats the following steps for i iterations:

173

assign each example in D to the cluster around the nearest
centroid, and update each centroid based on the examples
assigned to its cluster. KMeans relies upon a distance func-
tion that quantifies the similarity between feature vectors.

A sample use case for clustering is anomaly detection, for
instance, detecting that an insurance claim is unlike others
that have been seen before, and should therefore be audited
by a case worker. Cast in terms of Figure 1, that means that
an event with an unlabeled insurance claim can play both
the role of the event requiring prediction and the event with
example. More generally, the primary advantage of unsuper-
vised learning is that it does not require labeled examples.

Given a batch ∆ of new examples (i.e., feature vectors),
each new example gets added to the cluster with the clos-
est centroid. However, adding an example to a cluster may
cause its centroid to shift, which may cause other examples
to move to a new cluster, which may cause other centroids
to shift as well. In other words, the effect of one new ex-
ample can eventually ripple through the entire data set D.
Therefore, incremental training for KMeans requires work
proportional to |D|.

Evaluation for KMeans consists of computing the aver-
age distance of all test examples from the centroids of their
predicted clusters. Let error(t) be the error for one exam-
ple t, defined as distance(t,Model(D).predict(t).centroid).
The formula for evaluating clusters over test data T is:

evaluate(Model(D), T) =

∑
t∈T error(t)2

|T | (2)

As before, incremental evaluation maintains the running to-
tal sum =

∑
t∈T error(t)2 and count = |T |. Given an incom-

ing event with a new example t′, it adds sum += error(t′)2

and count += 1. After several new examples ∆, the up-to-
date evaluation is evaluate(Model(D), T ±∆) = sum/count .
Incremental evaluation requires only |∆| predictions. That
means that for KMeans, if |∆| � |D|, incremental evalua-
tion is much faster than incremental training.

4.3 CNB
CNB (Complementary Naive Bayes [36]) is a widely-used

algorithm for classification. Classification is the following
supervised learning problem: given a fixed set of categorical
classes (which can be represented by integers {0, . . . , k − 1}),
given a training set D of examples labeled with their class,
predict the class of new unlabeled examples.

A sample use case for classification is when a patient is
being admitted to a hospital, the receptionist can use the
displayed symptoms and other features to route the patient
to the right department. Cast in terms of Figure 1, that
means the event requiring prediction occurs when a recep-
tionist admits a patient, and the event with example occurs
when a doctor diagnoses a patient.

A standard machine learning text book observes that Naive
Bayes is the only learning method that does not perform an
explicit search through the space of possible hypotheses [31].
Therefore, CNB is unusual in that it has a simple incremen-
tal training algorithm. Given a batch ∆ of new examples,
it can update the model in |∆| steps without having to in-
dividually reconsider |D| old examples.

Evaluation for CNB can simply track how often the pre-
diction is correct on average, i.e., how often the true class
equals the predicted class. The error for one example t is

Algorithm Training: Training: Evaluation:
non-incremental incremental incremental

ALSWR O(i|D|) O(i|D|) O(|∆|)
KMeans O(i|D|) O(i|D|) O(|∆|)
CNB O(|D|) O(|∆|) O(|∆|)
NB O(|D|) O(|∆|) O(|∆|)
Lin.Reg. O(i|D|) O(i|D|) O(|∆|)
Log.Reg. O(i|D|) O(i|D|) O(|∆|)
N.Network O(i|D|) O(i|D|) O(|∆|)

Table 1: Computational complexity analysis of widely-used
machine learning algorithms, where i is the number of iter-
ations, |D| is the initial training data set size, and |∆| is the
number of new examples.

error(t) = if t.class = Model(D).predict(t) then 0 else 1.
The following formula evaluates CNB on test data T :

evaluate(Model(D), T) =

∑
t∈T error(t)

|T | (3)

Again, incremental evaluation maintains the current run-
ning total sum =

∑
t∈T error(t) and count = |T |. Given an

incoming event with a new example t′, add sum += error(t′)
and count += 1. The current evaluation after several new
examples ∆ is evaluate(Model(D), T ±∆) = sum/count .
That means that for CNB, both incremental training and
incremental evaluation require |∆| steps.

4.4 Summary of Complexity Analysis
Table 1 summarizes the time complexity of seven widely-

used machine learning algorithms. In addition to the three
discussed in detail above, it adds Naive Bayes (NB), Linear
Regression (Lin.Reg.), Logistic Regression (Log.Reg.) and
Neural Network (N.Network). NB is a similar algorithm
to CNB, but usually performs worse than CNB. Lin.Reg.,
Log.Reg., and N.Network are more advanced classification
techniques that are based on a Stochastic Gradient Descent
(SGD) solver. Incremental evaluation usually has a better
time complexity than incremental training. The only excep-
tions are CNB and NB, whose incremental training has the
same complexity as incremental evaluation. However, off-
the-shelf implementations of non-incremental machine learn-
ing algorithms are more widely available than incremental
ones. Therefore, a contextual event processing system is
likely to have only non-incremental training at its disposal.

5. EXPERIMENTAL METHODOLOGY
AQuA is largely independent from the specific machine

learning algorithm and underlying implementation frame-
work. To evaluate its utility, we seek to realistically simu-
late scenarios in which predictive analytics are being applied
to an incoming event stream. This implies a need for large
datasets with timestamped elements.

The Netflix and Wikipedia datasets are the largest pub-
licly available datasets that meet our criteria. The Netflix
dataset is 1.4GB and contains 100 million 〈user,movie,rating〉
examples from 1998 to 2005. Ratings range from 1 (least fa-
vorite) to 5 (most favorite). The Wikipedia dataset is 44GB
and contains edit history for all Wikipedia documents from
2002 to August, 2014 (over 14 million documents). Both
datasets have been used extensively in big data research [12,

174

 0 500,000 1,000,000 1,500,000
0.9

0.95

1

1.05

Elapsed time measured by incoming examples

C
h
u
n
k
−

q
u
a
lit

y

Figure 7: Quality over time for CNB, using strategy S15
with quality threshold 94%.

15, 18, 25, 37, 44].
For the purpose of evaluating model quality for CNB, we

need to assign a ground truth label to each Wikipedia docu-
ment. We do this by using the categories assigned by human
editors to the document. By sampling 25 popular categories
(e.g., science) we define a subset of the dataset that contains
over 2 million documents. For KMeans, we use Cosine dis-
tance between the vectors. We use standard tf-idf vectoriza-
tion to obtain a numerical representation of each Wikipedia
document. Using a sparse vector representation, the size of
the dataset is 8GB (multiple orders of magnitude smaller
than using dense vectors).

We use the term whole-world dataset to refer to the
entire data set, i.e., 100 million ratings in Netflix and over
2 million documents in Wikipedia. We sort the whole-world
dataset by timestamp, and use the oldest 20% of the whole-
world data as training data to generate an initial model.
The remaining 80% of the data is presented in timestamp
order to AQuA as an incoming training data stream.

We use Mahout 0.9 [26] as the base machine learning
framework. Since exploring distributed scale-out is not the
primary goal of our work, we run all KMeans and CNB ex-
periments on one server, which has 16 2-way 2.0 GHz cores
and 130GB of memory; and we run all ALSWR experiments
on another server, which has 20 2-way SMT 2.4 GHz Intel
Xeon cores and 260GB of memory.

6. EXPERIMENTAL RESULTS
This section presents the results of experiments designed

to answer fundamental questions about AQuA:

• Section 6.1: How does each retraining strategy trade
off training cost against model quality? Is a quality-
directed retraining system better than a quality-oblivi-
ous one?
• Section 6.2: What is the right retraining strategy when

there is abrupt model drift?
• Section 6.3: How does AQuA compare with incremen-

tal training in terms of processing speed and model
quality?
• Section 6.4: What AQuA parameters should a user

tune?

6.1 Evaluating Retraining Strategies
To illustrate how we compare retraining strategies, we

first discuss results for the CNB classification algorithm in
detail. Figure 7 illustrates how the model quality changes

Strategy Training data size Training time

Overall In-strategy Overall In-strategy

Fix 49 13 73 16
All 74 4 25 5
Gen 33 4 39 3
S10 3 0 27 2
S15 6 0 15 2
S20 14 0 22 1

Table 2: Sub-optimal scores for ALSWR+KMeans+CNB.
Lower is better, since a lower number indicates there are
fewer cases where the strategy gets beaten by other strate-
gies (Overall) or by the same strategy with a different quality
threshold (In-strategy).

across time during one particular benchmark run of CNB
with strategy S15 (sliding window of width w = 15, see Fig-
ure 4) and quality threshold 94%. Recall that AQuA nor-
malizes quality so the initial quality is 1. As new examples
arrive, quality slowly degrades until it reaches the threshold.
At that point, AQuA trains a new model, causing quality to
jump up. This process repeats.

We ran hundreds of experiments and summarized each
benchmark run by two numbers: accumulative chunk-quality
(i.e., the area under the curve in Figure 7) and retraining
effort (measured by total training time or by total number
of examples used to for all retrainings in the run). Figure 8
plots the reciprocal of quality (y-axis) against the retraining
effort (x-axis). On both axes, lower is better. The Pareto
frontier nearest the origin holds optimal trade-offs (i.e., bet-
ter quality with less retraining effort).

Most strategies from Figure 4 are represented by multiple
data points in each of the plots in Figure 8. For the Fix strat-
egy, each data point characterizes the quality-effort trade-off
for a chosen training dataset size, e.g., 10% of the whole-
world dataset. For the quality-directed retraining strate-
gies (All, Gen, and Sw), each data point characterizes the
quality-effort trade-off for a chosen quality threshold, e.g.,
90%. We use the same set of quality thresholds (90%, 92.5%,
94%, and 95%) for each quality-directed strategy. A higher
quality threshold yields a smaller inverse quality (lower y-
axis value).

Continuing with the example of CNB, Figure 8(e) shows
that the sliding-window strategies (S10, S15, and S20) do
best. The All strategy does worst, because it trains with
a larger data set but arrives at the same quality. Further-
more, the sliding-window strategies are the most stable in
the sense that changing the quality threshold moves them
along the Pareto frontier, but does not yield a totally better
result. Most of the other plots in Figure 8 look similar to
Figure 8(e), and we summarize them in Table 2.

Table 2 reports the sub-optimal score and in-strategy sub-
optimal score for all strategies over all three algorithms. We
say a data point p1 dominates data point p2 in the plot if
p1 takes less training effort and yields better model quality
than p2. For each data point p, its sub-optimal score is
the number of points that dominate p, and its in-strategy
sub-optimal score is the number of points with the same
strategy as p that dominate p. We generalize the scores from
individual points to strategies by summation.

The sub-optimal score characterizes how well a strategy

175

0 100,000,000 200,000,000 300,000,000 400,000,000
1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56
Never Fix All Gen

S10 S15 S20

(a) ALSWR q-d

0 2,000 4,000 6,000 8,000 10,000 12,00014,00016,00018,000
1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56
Never Fix All Gen

S10 S15 S20

(b) ALSWR q-t

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000
5.98

5.99

6

6.01

6.02

6.03

6.04

6.05

6.06

6.07

6.08
Never Fix All Gen S10 S15 S20

(c) KMeans q-d

0 5,000 10,000 15,000 20,000 25,000
5.98

5.99

6

6.01

6.02

6.03

6.04

6.05

6.06

6.07

6.08
Never Fix All Gen S10 S15 S20

(d) KMeans q-t

0 500,000 1,000,000 1,500,000 2,000,000
6.3

6.35

6.4

6.45

6.5

6.55

6.6

6.65

6.7

6.75

6.8
Never Fix All Gen S10 S15 S20

(e) CNB q-d

0 2,000 4,000 6,000 8,000 10,000 12,000
6.3

6.35

6.4

6.45

6.5

6.55

6.6

6.65

6.7

6.75

6.8
Never Fix All Gen S10 S15 S20

(f) CNB q-t

Figure 8: We plot the reciprocal of quality (y axis) against retraining effort (x axis). Quality is measured by the model’s
accumulative chunk-quality; lower y values indicate better quality. The left column plots quality vs. training data size,
measured in number of training data examples (i.e., q-d plot), the right column plots quality vs. training time, measured
in seconds (i.e., q-t plot); lower x values indicate less retraining effort. The Pareto frontier nearest the origin holds optimal
trade-offs (i.e., better quality with less retraining effort). In these experiments, we used quality thresholds of 80%, 82.5%,
85%, 87.5%, and 90% for ALSWR, 90%, 95%, 96%, 97%, and 98% for KMeans, and 90%, 92.5%, 94%, and 95% for CNB. A
higher quality threshold yields a smaller value for reciprocal of quality (lower y-axis value in these plots).

176

0 100,000,000 200,000,000 300,000,000 400,000,000 500,000,000
1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

Never Fix All Gen S10
S15 S20 H5 H10

(a) ALSWR abrupt model drift q-d

0 2,000 4,000 6,000 8,000 10,000 12,00014,00016,00018,000
1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85
Never Fix All Gen S10

S15 S20 H5 H10

(b) ALSWR abrupt model drift q-t

Figure 9: Similar plots to Figure 8 (i.e., q-d plot and q-t plot) for scenario with abrupt model drift. H5 and H10 are strategies
that detect abrupt model drift, and use hold-data of 5% and 10% of the whole-world data size, respectively.

Strategy Training data size Training time

Overall In-strategy Overall In-strategy

Fix 38 4 26 0
All 172 2 116 2
Gen 25 0 17 1
S10 33 1 25 1
S15 51 0 28 0
S20 96 1 51 1
H5 1 1 1 1
H10 16 0 11 0

Table 3: Sub-optimal scores for ALSWR in the presence of
abrupt model drift. Lower is better.

compares against other strategies, the lower the better. The
in-strategy sub-optimal score characterizes a strategy’s sta-
bility: a lower in-strategy sub-optimal score indicates a more
stable strategy, since different parameter settings make dif-
ferent but not strictly better trade-offs. Sliding-window
strategies consistently offer the best trade-off between re-
training effort and model quality, and they are stable. In
addition, the Fix strategy, which is quality-oblivious, consis-
tently performs worse than quality-directed retraining strate-
gies.

6.2 Abrupt Model Drift
To test if AQuA can handle abrupt model drift, we in-

verted all the Netflix movie ratings (e.g., change 5 to 1,
4 to 2, etc.) starting at the middle of the incoming training
data stream. For the change-point strategies, we experi-
mented with two different hold-data sizes: 5% and 10% of
the whole-world data size (denoted H5 and H10). When no
abrupt model drift was detected, the change-point strategies
fall back to S15 as the default retraining strategy.

Figure 9 plots accumulative chunk-quality (y axis) against
retraining effort (x axis) in the presence of abrupt model
drift. The change-point strategies H5 and H10 are close
to the Pareto frontier. Table 3 tallies up the overall and
in-strategy sub-optimal scores from Figure 9. When there
is an abrupt model drift, the sliding-window strategy with
abrupt model drift detection works best. Strategy All is

the worst, because it always contains conflicting training
examples. Furthermore, the Fix and All strategies are less
stable than others.

6.3 Comparison with Incremental Training
The experimental results so far focused on the cost of re-

training. Here, we report numbers on the cost of incremental
evaluation, i.e., the time to update the quality estimate when
a new example arrives. Note that for ALSWR, each example
is a movie rating, and for KMeans and CNB, each example
is a Wikipedia document. We measured 3.9µs for ALSWR,
4.5ms for KMeans, and 4.3ms for CNB. For most real-world
event processing applications, these costs are unlikely to be-
come the bottleneck. For comparison, a widely-cited incre-
mental training paper [5] reports that incremental training
takes at least 1% of the time of from-scratch training, which
takes over 1,000 seconds. That works out to >10s, which is 4
orders of magnitude worse than our incremental evaluation.

Next, we want to compare the quality of incremental eval-
uation and incremental training. To obtain an upper bound
for an incremental training system’s model quality, we evalu-
ate the new model using the test data collected since the pre-
vious retraining at the end of each AQuA retraining phase.
We then compare this to the quality when AQuA started
retraining, which is the model quality AQuA produces. On
average, the upper-bound quality of incremental training is
at most 13.5% higher for ALSWR, 1.2% higher for KMeans,
and 3.7% higher for CNB.

Our results indicate that AQuA can significantly reduce
training effort with modest impact on model quality. A user
can easily decide how to balance training effort and model
quality by setting the quality threshold for AQuA.

6.4 AQuA Tunable Parameters
Being an adaptive system, AQuA requires users to provide

only four parameters: quality threshold, inertia window size,
sliding window size, and hold-data size. We expect that users
with some experience with the data set and analytics should
find it easy to supply usable values for these parameters.

For example, consider when a user migrates a system that
was based on a fixed-size retraining schedule (corresponding
to the Fix strategy) to AQuA. Let N be the size of the orig-
inal schedule. If the user demands a relatively low quality-

177

threshold, AQuA would rarely trigger retraining, thus sav-
ing a significant amount of training effort while satisfying the
user’s demand. If the quality-threshold was set unreasonably
high, as a rule of thumb, one can set inertia window size and
sliding window size to the original size N ; AQuA would then
automatically degenerate to the old fixed-size schedule sys-
tem. If the quality-threshold is set at a reasonable value,
then AQuA can guarantee a model of that quality thresh-
old while minimizing the retraining effort. Throughout our
experiments, we start with a reasonable inertia window size
(i.e., the amount of data that can sufficiently train a model
to be useful), then experiment with sliding window size of
1×, 1.5×, and 2× the inertia window size. One can set the
inertia window size to the original fixed size N .

For hold-data size, our experience indicates that setting
it to the inertia window size (or a fraction of that, e.g.,
0.5×) can achieve the best tradeoff, because AQuA suffers
less from stale data.

7. RELATED WORK
This paper was part of a broader research project called

META: Middleware for Events, Transactions, and Analyt-
ics [2]. But whereas this paper deals with machine learning,
other papers to come out of the META project do not. In-
stead, they investigate data-store issues including snapshot
consistency [9], event processing over a JSON store [13], and
translating rules to queries [39].

The goal of this paper is to maintain a model for a chang-
ing data set with high quality and low performance cost.
This is addressed by classic incremental frameworks like
Rete [16] or (stream-)relational view maintenance [19, 41].
Whereas these frameworks assume centralized data with im-
mediate and exact descriptive analytics, this paper investi-
gates distributed data with delayed and approximate pre-
dictive analytics.

Big data analytics is an extensively studied area. Many
large-scale machine learning platforms exist [10, 17, 25, 27].
Mahout [26] and MLlib [40] implement machine-learning
algorithms in Bulk Synchronous Parallel (BSP) style [43].
Several recent systems [4, 5, 7, 20, 24, 30, 34, 35, 38] incre-
mentalize distributed big-data frameworks such as MapRe-
duce [11] and Dryad [22]. These incremental systems help
only when the input change is small enough for the incre-
mental algorithm to be faster than from-scratch recomputa-
tion. Furthermore, they all focus on performance, without
measuring or considering quality. This paper is complemen-
tary: we show how to make quality-directed retraining deci-
sions for Pareto-optimal results, irrespective of whether the
underlying framework is incremental or not.

Fluxy is a framework that avoids retraining when quality-
of-data (QoD) exceeds a threshold [14]. In contrast, we in-
crementally evaluate the quality of machine-learning models.

The systems community is not alone in investigating how
to maintain a model for a changing data set: this has also
been studied in machine learning. For instance, Masud et al.
show how to maintain high-quality classifiers when concepts
drift [29] or evolve [1]. Hoi et al. use multiple-kernel learning
to adapt to changing data by adjusting both the kernels and
their relative weights [21]. And machine unlearning removes
the effect of old data from a model [8]. Like AQuA, these
papers focus on quality of the model. However, all of these
papers exploit characteristics of specific machine learning
algorithms (i.e., classifiers). In contrast, we take a black-

box, systems approach and enable the user to trade quality
for performance.

Transfer learning [42] is a method that reuses the features
or models learned from one training run to the next. While
promising for certain tasks (e.g., auto-encoder), it is difficult
to generalize it to all learning tasks and it is difficult to de-
cide if the learning transfers the negative knowledge without
evaluating the model.

Irregular sampling [28] is a sampling method that recon-
structs statistical properties within a non-uniformed time
series. AQuA treats each incoming example as a testing da-
tum to continuously evaluate the model, thus the statistical
properties are well maintained and evaluated.

Online learning [6] is a highly active research area in ma-
chine learning. Stochastic gradient descent (SGD) is the
most adopted online learning method [3], and HogWild! par-
allelizes SDG [33]. AQuA is complementary to HogWild!;
HogWild! can be viewed as yet another machine learning
framework to be retrained when model quality falls below a
target threshold or abrupt model drift is detected.

8. CONCLUSION
This paper tackles the problem of how to maintain a high-

quality analytics model for contextual event processing when
training data keeps changing. We observe that incremental
evaluation of machine learning algorithms is usually faster
than incremental training. Based on this observation, we
propose AQuA, a quality-directed adaptive analytic retrain-
ing framework. We evaluate AQuA on two large real-world
datasets and three widely-used machine learning algorithms.
The results demonstrate that the quality-directed approach
strikes a better balance between model quality and train-
ing effort than the traditional quality-oblivious approaches,
and that a near-optimal tradeoff between model quality and
training effort is possible in the presence of either gradual
or abrupt model drift.

Acknowledgment
We thank Jian Tan and Li Zhang for suggesting the EMA
algorithm to detect abrupt model change. We thank Andrew
Palumbo for helping answer Wikipedia dataset vectorization
questions in Mahout. We thank Ben Herta for setting up
the servers to run the experiments. We thank Jinfeng Yi for
helping clarify clustering algorithms. We thank Haibo Chen,
Bo Li, Josh Milthorpe, Feng Qin, Alex Tarvo, Junming Xu,
Yiqing Yang, Ce Zhang, and the anonymous reviewers for
providing constructive feedback for this paper.

9. REFERENCES
[1] T. Al-Khateeb, M. M. Masud, L. Khan, C. C.

Aggarwal, J. Han, and B. M. Thuraisingham. Stream
classification with recurring and novel class detection
using class-based ensemble. In International
Conference on Data Mining (ICDM), pages 31–40,
2012.

[2] M. Arnold, D. Grove, B. Herta, M. Hind, M. Hirzel,
A. Iyengar, L. Mandel, V. Saraswat, A. Shinnar,
J. Siméon, M. Takeuchi, O. Tardieu, and W. Zhang.
META: Middleware for events, transactions, and
analytics. IBM Journal of Research and Development,
60(2–3):15:1–15:10, 2016.

178

[3] D. Bertsekas. Nonlinear Programming. Athena
Scientific, 1995.

[4] P. Bhatotia, U. A. Acar, F. P. Junqueira, and
R. Rodrigues. Slider: Incremental sliding window
analytics. In International Middleware Conference,
pages 61–72, 2014.

[5] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar,
and R. Pasquini. Incoop: MapReduce for incremental
computations. In Symposium on Cloud Computing
(SoCC), 2011.

[6] L. Bottou. Online learning and stochastic
approximations. On-Line Learning in Neural
Networks, pages 9–42, 1998.

[7] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
HaLoop: Efficient iterative data processing on large
clusters. In Conference on Very Large Data Bases
(VLDB), pages 285–296, 2010.

[8] Y. Cao and J. Yang. Towards making systems forget
with machine unlearning. In Symposium on Security
and Privacy, pages 463–480, 2015.

[9] F. Chirigati, J. Siméon, M. Hirzel, and J. Freire.
Virtual lightweight snapshots for consistent analytics
in NoSQL stores. In International Conference on Data
Engineering (ICDE), Industrial Track, 2016.

[10] J. Dean, G. S. Corrado, R. Monga, K. Chen,
M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large
scale distributed deep networks. In Conference on
Neural Information Processing Systems (NIPS), 2012.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Operating
Systems Design and Implementation (OSDI), pages
137–150, 2004.

[12] C. Delimitrou and C. Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management.
In Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 127–144,
2014.

[13] M. Enoki, J. Siméon, H. Horii, and M. Hirzel. Event
processing over a distributed JSON store: Design and
performance. In Conference on Web Information
System Engineering (WISE), pages 395–404, 2014.

[14] S. Esteves, J. a. N. Silva, J. a. P. Carvalho, and
L. Veiga. Incremental dataflow execution, resource
efficiency and probabilistic guarantees with Fuzzy
Boolean nets. Journal of Parallel and Distributed
Compututing (JPDC), 2015.

[15] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the clouds: A
study of emerging scale-out workloads on modern
hardware. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
37–48, 2012.

[16] C. L. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem.
Artificial Intelligence, 19:17–37, 1982.

[17] Giraph. http://giraph.apache.org/. Retrieved
February, 2016.

[18] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In Operating Systems

Design and Implementation (OSDI), pages 17–30,
2012.

[19] T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. In International Conference on
Management of Data (SIGMOD), pages 328–339,
1995.

[20] P. K. Gunda, L. Ravindranath, C. A. Thekkath,
Y. Yu, and L. Zhuang. Nectar: Automatic
management of data and computation in datacenters.
In Operating Systems Design and Implementation
(OSDI), 2010.

[21] S. C. H. Hoi, R. Jin, P. Zhao, and T. Yang. Online
multiple kernel classification. Machine Learning,
90(2):289–316, 2013.

[22] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. In European Conference on
Computer Systems (EuroSys), pages 59–72, 2007.

[23] S. Lloyd. Least squares quantization in PCM. IEEE
Transactions on Information Theory, 28(2):129–137,
Sept. 2006.

[24] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and
K. Yocum. Stateful bulk processing for incremental
analytics. In Symposium on Cloud Computing (SoCC),
pages 51–62, 2010.

[25] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab: A framework for machine learning and
data mining in the cloud. In International Conference
on Very Large Data Bases (VLDB), volume 5, pages
716–727, Apr. 2012.

[26] Mahout. http://mahout.apache.org/. Retrieved
February, 2016.

[27] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In
International Conference on Management of Data
(SIGMOD), pages 135–146, 2010.

[28] F. Marvasti. Nonuniform Sampling: Theory and
Practice. Information Technology. Kluwer, New York,
2001.

[29] M. M. Masud, J. Gao, L. Khan, J. Han, and B. M.
Thuraisingham. A multi-partition multi-chunk
ensemble technique to classify concept-drifting data
streams. In Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining (PAKDD),
pages 363–375, 2009.

[30] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.
Differential dataflow. In Conference on Innovative
Data Systems Research (CIDR), 2013.

[31] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc.,
New York, NY, USA, 1997.

[32] M. Mohri, A. Rostamizadeh, and A. Talwalkar.
Foundations of Machine Learning. The MIT Press,
2012.

[33] F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In Conference on Neural Information
Processing Systems (NIPS), 2011.

[34] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and

179

notifications. In Operating Systems Design and
Implementation (OSDI), pages 251–264, 2010.

[35] L. Popa, M. Budiu, Y. Yu, and M. Isard. DryadInc:
Reusing work in large-scale computations. In
Workshop on Hot Topics in Cloud Computing
(HotCloud), 2009.

[36] J. Rennie, L. Shih, J. Teevan, and D. Karger. Tackling
the poor assumptions of Naive Bayes text classifiers.
In International Conference on Machine Learning
(ICML), 2003.

[37] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo,
J. Park, M. A. Hassaan, S. Sengupta, Z. Yin, and
P. Dubey. Navigating the maze of graph analytics
frameworks using massive graph datasets. In
International Conference on Management of Data
(SIGMOD), pages 979–990, 2014.

[38] A. Shinnar, D. Cunningham, B. Herta, and
V. Saraswat. M3R: Increased performance for
in-memory Hadoop jobs. In Conference on Very Large
Data Bases, Industrial Track, pages 1736–1747, 2012.

[39] A. Shinnar, J. Siméon, and M. Hirzel. A pattern
calculus for rule languages: Expressiveness,
compilation, and mechanization. In European
Conference on Object-Oriented Programming
(ECOOP), pages 542–567, 2015.

[40] Spark MLib.

http://spark.apache.org/docs/1.1.1/mllib-guide.html.
Retrieved February, 2016.

[41] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L.
Wu. General incremental sliding-window aggregation.
In Conference on Very Large Data Bases (VLDB),
pages 702–713, 2015.

[42] L. Torrey and J. Shavlik. Transfer learning. In E. S.
Olivas, editor, Handbook of Research on Machine
Learning Applications and Trends: Algorithms,
Methods, and Techniques: Algorithms, Methods, and
Techniques. IGI Global, 2009.

[43] L. G. Valiant. A bridging model for parallel
computation. Communications of the ACM,
33(8):103–111, Aug. 1990.

[44] H. Yun, H.-F. Yu, C.-J. Hsieh, S. V. N. Vishwanathan,
and I. S. Dhillon. NOMAD: Non-locking, stOchastic
Multi-machine algorithm for Asynchronous and
Decentralized matrix completion. In International
Conference on Very Large Data Bases (VLDB), pages
975–986, Sept. 2014.

[45] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the
Netflix prize. In Conference on Algorithmic Aspects in
Information and Management (AAIM), pages

337–348, 2008.

180

