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Unsupervised Learning Scenario:
Clustering
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Supervised Learning Scenario:
Classification
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Supervised Learning Scenario:

Collaborative Filtering
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META:

Middleware for Events,
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Model Drift
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Retraining Workflow (Attempt 1)
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*FiXed-size Retraining Strategy
(Quality-Oblivious)
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Retraining Workflow (Attempt 2)
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Step 1: cache example A
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Step 2: inc-eval model

Step 4: select retraining data
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Step 5: retrain model
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Training data D

Testdata T
Evaluate error (inverse of quality):
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New test data A
Incrementally update sum and count

evaluate(Model(D), T + A) = \/sum/count




Retrain When Quality falls
Below Threshold
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Training Data Selection for
Quality-Directed Strategies
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Retraining Strategies
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Step 1: cache example A
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AQUA Store Interface
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Gradual vs. Abrupt Model Drift
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Performance: Collaborative Filtering

(Algorithm: ALSWR, dataset: Netflix)
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Performance: Clustering

(Algorithm: KMeans, dataset: Wikipedia)
1/Quality (lower is better)
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Performance: Classification

(Algorithm: Complementary Naive Bayes, dataset: Wikipedia)
1/Quality (lower is better)
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Related Work
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Conclusions
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 Quality-directed retraining

 Strategies for gradual and abrupt model drift
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