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Unsupervised Learning Scenario: 
Clustering
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Supervised Learning Scenario: 
Classification
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Supervised Learning Scenario: 
Collaborative Filtering
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META: Middleware for Events, 
Transactions, and Analytics [IBMRD’16]
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Model Drift
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This paper:

• When to retrain?

• On what training data?



Retraining Workflow (Attempt 1)
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Fixed-Size Retraining Strategy
(Quality-Oblivious)
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Retraining Workflow (Attempt 2)
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Retrain When Quality falls 
Below Threshold
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Training Data Selection for 
Quality-Directed Strategies
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Retraining Strategies
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AQuA Store Interface
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AQuA Store Interface
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Gradual vs. Abrupt Model Drift
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Retraining Workflow 
(Attempt 3)
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Performance: Collaborative Filtering
(Algorithm: ALSWR, dataset: Netflix) 
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Performance: Clustering
(Algorithm: KMeans, dataset: Wikipedia) 
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Performance: Classification
(Algorithm: Complementary Naïve Bayes, dataset: Wikipedia) 
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Related Work
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Conclusions

• Incremental evaluation of model quality

• Quality-directed retraining

• Strategies for gradual and abrupt model drift

• Sliding window strategies are on Pareto frontier
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