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ABSTRACT
Stream processing is a computational paradigm that allows
the analysis of live data streams as they are produced. This
paper describes a programming model, based on enhance-
ments to spreadsheets, that enables users with limited pro-
gramming experience to participate directly in the develop-
ment of complex streaming applications. The programming
model augments a conventional spreadsheet with streaming
features that permit operating over unbounded data sets de-
spite the finite interface provided by the spreadsheet. The
new constructs include time-based windows and partition-
ing. We introduce a spreadsheet compiler that generates
C++ code to achieve integration with existing stream pro-
cessing systems. Our experimental study illustrates the ex-
pressivity of the new features and finds that our implemen-
tation is between 8x slower and 2x faster than hand-written
stream programs.

CCS Concepts
•Software and its engineering→Data flow languages;

Keywords
Spreadsheets; end-user programming; stream processing

1. INTRODUCTION
Continuous data streams arise in many different domains:

finance, health care, telecommunications, and transporta-
tion, among others. Stream processing is a computational
paradigm that allows the analysis of these data streams as
they are being produced. This is necessary since immediate
insights are more valuable than delayed insights, and since
there is often too much data to efficiently persist to disk for
offline analysis. Domain experts often have limited program-
ming experience and must rely on developers to implement
their models. Our objective is to bridge the gap between
domain experts and developers by enabling the former to
participate directly in the development of complex stream-
ing applications. In doing so, they can apply their domain
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knowledge to evolve, refine, and customize data analysis.
Business analysts, scientists, and researchers commonly

use spreadsheets for data collection, analysis, and report-
ing. The versatility and ease-of-use of spreadsheets enables
millions of users worldwide [19, 21] to organize their data
in two dimensions, perform analysis by applying operations
and transformations, and use built-in charting capabilities
to visualize and present their models and findings.

Unfortunately, two-dimensional spreadsheets fall short on
two wide-spread requirements for streaming applications.
First, since recent data tends to be more relevant than older
data, most streaming applications use some form of time-
based sliding windows. And second, since streams tend to
have a partitioning key, most streaming applications ana-
lyze streams independently by partition. Connectors and
adapters that ingest data from external sources into a spread-
sheet are necessary. But they are not sufficient for most
streaming applications if the organization of that data is
limited to a fixed number of rows and columns.

With two dimensions, it is challenging to connect the
spreadsheet to a live data stream of stock quotes, for ex-
ample, and compute the average stock price over a sliding
window of time (e.g., 5 minutes worth of data) — since it is
impractical to know a priori how many cells to allocate for a
time-based window. In a spreadsheet programming model,
a function to compute the average value of a range of cells
requires a static bound on the range. A time-based window
however defines a variable-sized range with indeterminate
updates to the range as data is streamed from a live source.
Such variability affects both the usability of the spreadsheet
and the computation ordering. While it is common for live
analysis of data to perform aggregations and analysis over
time-based windows, it is difficult to map these concepts
naturally into typical spreadsheets interfaces.

Similarly, it is equally challenging to use a two-dimensional
spreadsheet to compute the average trade price for all stock
symbols that might appear in the live stream since this too
may be a large and dynamic number of symbols. One might
partition the stock stream by symbol, allocate a different
sheet for each symbol, and repeat their analysis per sheet.
However this is tedious, and unless all symbols are known
in advance, it is not a practical solution.

This paper extends the expressivity of the spreadsheet
programming model to overcome the static and finite na-
ture of the spreadsheet interface, and thus, support gen-
eral streaming applications. Our approach treats windows
as first-class constructs and decouples windows from their
graphical representation. An individual cell can represent a
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time-based window that is variable in size and specified us-
ing a duration. We also provide a mechanism for specifying
partitions, that is, performing the same computation (e.g.,
average stock price) for different keys (e.g., stock symbols)
of a possibly large or unknown data set. The user speci-
fies the partitioning criterion, the spreadsheet user interface
displays a debug view showing the computation for one user-
selected key, and the server performs the same computation
separately for all keys. In this way, we enable processing
variable-sized and unbounded data sets that are inherent
to time-based windows and partitions within an otherwise
conventional spreadsheet. This espouses all the benefits of
the spreadsheet interface and its ease of use while providing
powerful features for modern day streaming analysis.

We implement our enhanced spreadsheet programming
model by extending ActiveSheets [42]. In that paper, a
spreadsheet ingests streaming data, and the user can orga-
nize and analyze that data as they would a static spread-
sheet. That paper however did not overcome the challenges
of dynamic-sized windows and partitions, and remained re-
stricted to the finite nature of the conventional spreadsheet.
Whereas the previous paper implemented streaming spread-
sheets as an interpreter only, this paper implements them as
a compiler instead to achieve superior performance. The
compiler and its lightweight runtime system make it pos-
sible to integrate a spreadsheet into existing streaming ap-
plications via a simple native interface. Our spreadsheet
compiler generates C++ code that implements the logic en-
coded in the spreadsheet and supports time-based windows
and partitions. It also includes a number of optimizations
important to make the implementation of the programming
model efficient.

To demonstrate the versatility of our programming model,
we have integrated spreadsheets to execute natively in two
existing systems: Node-RED [32] and IBM Streams [22].
The former is a platform for creating “Internet of Things”
workflows that stream and process data between hardware
devices, RESTful online services, and arbitrary user code
written in JavaScript. The latter is an industry-strength
platform for high-speed data analytics.

We implemented a number of example benchmarks to
evaluate the expressive power of our spreadsheet program-
ming model and its performance implications. We found
that it is both easy to express and work with time-based win-
dows and partitions within a spreadsheet interface (we used
Microsoft Excel). The evaluation shows that our optimiza-
tion techniques provide up to 2x speedup for spreadsheets
that use time-based windows compared to IBM Streams, and
results are no worse than 8x slower for other benchmarks.

The contributions of this paper are:

• An extension of the spreadsheet programming model
to support dynamic and variable sized time-based win-
dows and partitions (Section 2).
• Formal semantics for the new features (Section 3).
• A spreadsheet compiler with optimizations specific to

time-based windows and a lightweight runtime for na-
tive spreadsheet execution (Section 4).
• An experimental study to demonstrate the expressivity

of the new features and the efficiency of the output of
our compiler implementation (Section 5).

This paper provides spreadsheet extensions for stream
processing and working with unbounded data sets arising

Figure 1: Conventional streaming spreadsheet.

from time-based windows and partitions. The resulting pro-
gramming model is easy to use for non-programmers, with
an implementation that makes it usable with modern stream
processing systems.

2. OVERVIEW
This section gives an overview of our approach using a

streaming bargain calculator as a running example. The
calculator consumes two input streams: Trades contains the
transactions that have been made; Quotes contains quoted
stock prices. A stream is a series of tuples consisting of
named attributes. For each quoted price, the objective is
to determine whether or not it is a bargain by comparing
it to an average obtained using recent trades. The average
we consider is the volume-weighted average price (VWAP).
Given a window of prices Pi and volumes Vi, the VWAP is
defined as:

VWAP =

∑
i Pi × Vi∑

i Vi

After computing the VWAP over Trades, the bargain cal-
culator joins that with Quotes to determine whether or not
each quoted price is less than the VWAP. If yes, it outputs a
bargain. This computation needs to be done for each stock
symbol that appears in the Quotes stream, and averages are
taken over five-minute windows.

In a conventional streaming spreadsheet [42], there is a
bounded number of cells available for data layout and com-
putation. Figure 1 shows a simplified bargain calculator
with averages taken over a small fixed-size window and only
for a single stock symbol (ACME). Cells A3 through C10 con-
tain incoming tuples from input Trades that are updated
live. Cells A15 through C15 show the Quotes input. Cells
G3 through G10 contain the computation of the price times
the volume, and cells C12 and G12 aggregate the volume and
price times volume, respectively. Finally, G15 shows the re-
sult of the VWAP computation and H15 whether or not the
quoted price is a bargain.

Figure 1 over-simplifies the bargain calculator application
in two important ways. First, aggregations can only happen
over graphical windows in the spreadsheet, so the program-
ming model is not sufficiently expressive to support windows
defined as five minutes worth of data. Time-based windows
can be very large, variable in size, and may require an un-
bounded space on the spreadsheet. Second, Figure 1 is only
computing bargains for one stock symbol. If Trades contains
many different symbols, the user would have to select each
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Figure 2: Time-based windows and partitioning.

and perform similar bargain calculations, requiring a poten-
tially unbounded space on the spreadsheet. To make matters
worse, these symbols may not be known in advance. This
paper overcomes the finite nature of the spreadsheet, by aug-
menting the language with support for time-based windows,
and a construct, called partition, that allows specifying a
computation for all elements of a data set.

Figure 2 shows the running example in the augmented
language. In this figure, the spreadsheet is partitioned ac-
cording to the stock symbol (the partitioning key), which
means that all computations are done for a sample sym-
bol (in this case, ACME). The runtime engine performs the
same computation for all symbols. Partitioning is specified
as part of the meta-data for the spreadsheet and does not
appear in it directly. The results of all these computations
are recombined—merged in order—by the runtime engine
to form the output stream of the spreadsheet. As a conven-
tion, each sheet allows a single partitioning key. The user
may employ additional sheets to work with other keys (e.g.,
currency). In Figure 2, cells A3 through C3 contain the input
Trades, and A12 through C12 the input Quotes, partitioned by
key sym.

The formula WINDOW(C3,300) in C6 means that this cell
represents a window of past values that have appeared in C3.
Every tuple that appears in the spreadsheet has an implicit
timestamp. The window contains those whose timestamps
are within 300 seconds of the last time that the value of C3
changed. When a new value comes into C3, then windows
on that cell are updated. Similarly, cell G6 is a time-based
window of price times volume. The VWAP and bargain
calculations are done as before.

Figure 2 contains fewer cells to specify the calculation of
VWAP compared to the conventional streaming spreadsheet
of Figure 1. Despite its conciseness, it is more powerful and
expressive as illustrated in Figure 3. This figure shows how
the new constructs add two new dimensions to the spread-
sheet. Time-based windows contain an unbounded set of
values using a single cell as its representation. The choice of
a partitioning key results in an unbounded number of sheets
that independently perform the same computation for all
the different values of the key.

Streaming spreadsheets can be used as nodes or operators
in a larger stream processing system. To this end, they must
provide adequate performance in the presence of time-based
windows and partitioning. We have implemented a compiler
from spreadsheets to C++ that incrementalizes computa-
tion over windows. We demonstrate that the performance
of our implementation permits using spreadsheets with mod-
ern stream processing systems.

Figure 3: New spreadsheet dimensions: time and
partitioning key.

3. FORMAL SEMANTICS
This section formalizes our enhancements to streaming

spreadsheets. We write spreadsheet to mean a streaming
spreadsheet enhanced with our new constructs. The de-
sign objectives for our work are as follows. Spreadsheets
should capture many real-world streaming use cases by of-
fering time-based windows and partitioning. But at the
same time, the behavior of conventional spreadsheet fea-
tures should be compatible with off-the-shelf spreadsheets,
such as Excel. Furthermore, the semantics should be clear,
deterministic, and efficiently implementable.

To meet these objectives, we formalized the semantics.
The formalization is based on our prior work [42], but with
new contributions to support windows and partitions. Win-
dows are supported via a new WINDOW construct. Parti-
tions are supported by revising the semantics of the ex-
isting ActiveSheets constructs (but note that this paper
contains a self-contained description). Formalizing the se-
mantics makes it possible to establish important properties:
partition isolation (which enables semantics-preserving data
parallelism) and incrementality (which limits storage over-
head and redundant recomputation). Section 4 presents an
optimizing compiler that implements the semantics.

3.1 Overview
Streams are sequences of values with timestamps. Values

can either be scalars (e.g., numbers or strings) or windows
(i.e., sequences) of values. Notice that for the formalization,
streams of tuples can be encoded as multiple streams—one
per attribute of the tuple—with the same timestamp.

A spreadsheet is a collection of cells containing formulas.
Formulas combine references to input streams and cells—
cyclic references are discussed below—in order to compute
new streams using spreadsheet functions such as arithmetic,
filtering, windowing, and aggregation functions. These com-
puted streams are the output streams of the spreadsheet.

Spreadsheets are reactive agents. A formula is (re)com-
puted only when one of the input streams or cells it refers
to is updated, i.e., arrival of a new value on a stream or
recomputed cell. Values are persistent. A cell retains the
last computed value until the next computation.

Spreadsheets are synchronous agents. They adopt the ap-
proach of synchronous languages [8]. The timestamp at-
tached to the value computed by a formula is simply the
timestamp of the event that triggers the (re)computation,
with no delay.

A spreadsheet has one special input stream: the partition-
ing stream or key (e.g., sym of the Trades input in Figure 2),
possibly constant if partitioning is not needed. All input
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v ::= ` | {`t11 , ..., `tnn } f ::= s0 | φ(c1, ..., cn) | SELECT(c0, c1) | WINDOW(c0, `0, c1) | PRE(c0, c1, `0)

Ts:`(c, t) =





{t0 ∈ dom(s0) ∩ [0, t]|s(t0) = `} if c 7→ s0⋃n
i=1 Ts:`(ci, t) if c 7→ φ(c1, ..., cn)

{t0 ∈ Ts:`(c1, t)|Es:`(c1, t0) = TRUE, Ts:`(c0, t0) 6= ∅} if c 7→ SELECT(c0, c1)

Ts:`(c1, t) if c 7→ WINDOW(c0, `0, c1)

Ts:`(c1, t) if c 7→ PRE(c0, c1, `0)

deps(c) =





∅
{c1, ..., cn}
{c0, c1}
{c0, c1}
{c1}

Es:`(c, t) =





s0(max(Ts:`(c, t))) if c 7→ s0 and Ts:`(c, t) 6= ∅
φ(Es:`(c1, t), ..., Es:`(cn, t)) if c 7→ φ(c1, ..., cn) and Ts:`(c, t) 6= ∅
Es:`(c0,max(Ts:`(c, t))) if c 7→ SELECT(c0, c1) and Ts:`(c, t) 6= ∅
{Es:`(c0, t0)t0 |t0 ∈ Ts:`(c0, t) ∩ (max(Ts:`(c, t))−`0, t]} if c 7→ WINDOW(c0, `0, c1) and Ts:`(c, t) 6= ∅
Es:`(c0, prev(Ts:`(c1, t))) if c 7→ PRE(c0, c1, `0) and |Ts:`(c, t)| ≥ 2 and Ts:`(c0, prev(Ts:`(c1, t))) 6= ∅
`0 if c 7→ PRE(c0, c1, `0) and |Ts:`(c, t)| ≥ 2 and Ts:`(c0, prev(Ts:`(c1, t))) = ∅
`0 if c 7→ PRE(c0, c1, `0) and |Ts:`(c, t)| = 1

⊥ if Ts:`(c, t) = ∅

Ts(c, t) =
⋃

`

Ts:`(c, t) Es(c, t) = Es:s(max(Ts(c,t)))(c, t) if Ts(c, t) 6= ∅

Figure 4: Formal semantics; ` is a literal, t is a timestamp, s is a stream, c is a cell, and φ is a function.

streams and computations are partitioned according to the
value of the partitioning stream, e.g., ACME, which identi-
fies the partition. This means that the spreadsheet is really
a collection of sheets, one for each value for the partition-
ing stream. Each sheet represents a partition and contains
calculations for a specific value of the partitioning stream.
The formulas are computed for each partition independently.
The output streams are obtained by merging the computed
values for all partitions in order of timestamps. For instance,
the VWAP formula of our example spreadsheet outputs for
each input trade the volume-weighted average for the traded
stock, i.e, the specific stock in this particular trade.

3.2 Definitions
Let a tick T be a possibly empty, possibly infinite se-

quence of natural numbers {t1, t2, ...} denoting timestamps,
e.g., microseconds since midnight. A non-empty finite tick T
always admits a maximal element max(T ). Given a finite
tick T with at least two elements, we define the second-to-
max element prev(T ).

Let a value v be either a literal ` or a window w—a finite,
possibly empty set of literals with pairwise distinct times-

tamps: {`t11 , ..., `
t|w|
|w| }.

Let a stream s be a map from a tick to values. We
write dom(s) for the tick of s and s(t) for the value of s at
time t. We say that s ticks at time t if t ∈ dom(s). For con-
venience, if t /∈ dom(s) but t ≥ min(dom(s)), we write s(t)
for the most recent value of s at time t, i.e., s(max(dom(s)∩
[0, t])). A stream or cell value is absent before its first tick,
denoted by ⊥.

Let a spreadsheet S be a finite collection of cells. Each
cell has a unique name c and a formula f . We write c 7→ f
if cell c maps to formula f .

The syntax of formulas is specified in Figure 4 where φ
denotes a family of functions (such as division /, greater-
than >, or Excel’s IF or SUM functions). For simplicity,

we do not formalize nested function applications and model
constant formulas implicitly by means of constant streams.
There are no types. Functions can consume and produce
error values. They also accept absent values but do not
produce the absent value.

3.3 Semantics
The semantics of a spreadsheet S is defined as a function

of its partitioning stream s. Figure 4 first specifies the tick of
cell c up to time t—Ts:`(c, t)—and the value of c at time t—
Es:`(c, t)—for the partition `. For example, in Figure 2, the
partitioning stream s is sym and the observed partition `
is ACME. Hence, Tsym:ACME(B3, t) defines the tick of Cell B3
and Esym:ACME(B3, t) defines the value of Cell B3 at time t.

Even though the screenshot of the client in Figure 2 dis-
plays only one partition ` = ACME, the server computes all
partitions. The tick and values of all partitions of c—Ts(c, t)
and Es(c, t)—are obtained by combining the ticks and values
for all partitions. As defined at the bottom of Figure 4, the
tick of c is simply the union of the ticks of c for all partitions.
The value of c at time t is the most recently computed value
for c across all partitions.

We now explain the specification of Ts:`(c, t) and Es:`(c, t).
Function application. A function application φ(c1, ..., cn)
ticks when any argument does—the tick of the application
is defined as the union of the ticks of the arguments. In
particular, it starts producing values as soon as one of the
argument cells ci does. The function application at time
t is computed from the current values of the cells at time
t. By design, the value of ci at time t is the most recently
computed value of ci or the absent value if ci has not been
computed yet. E.g., SUM(c1, ..., cn) is the sum of the cur-
rent values of the cells c1, ..., cn where an absent value is
interpreted as zero.

Selection. The SELECT construct filters a data stream ac-
cording to a condition stream. SELECT(c0, c1) ticks when c1
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does and evaluates to TRUE, returning the most recent value
of c0. For instance, if c1 contains formula c0 > 0 then
SELECT(c0, c1) streams the positive values in c0.

Windowing. The WINDOW construct collects the most re-
cent values of a stream: WINDOW(c0, `0, c1) captures the val-
ues of c0 with their respective timestamps in the last `0 time
units up to the latest tick of c1. If t is the latest tick of c1,
the window contains the values of c0 from the time interval
(t− `0, t]. Because the window duration `0 is a statically-
known constant, windows can be maintained incrementally
by appending new values and evicting old values.

Since WINDOW(c0, `0, c1) is only computed when c1 ticks,
it can contain stale values. But the only way to observe such
stale values is to use the window in combination with faster-
paced streams than c1. And no stream in a spreadsheet
partition can be faster-paced than the combined inputs to
that partition. For the VWAP example from Figure 2, if
c1 7→ φ′(Trades.f,Quotes.g), where φ′ is an arbitrary spread-
sheet function and f and g are arbitrary fields, then it is
impossible to observe stale window contents in the spread-
sheet partition. Updating the window contents more fre-
quently would yield no benefit, as the updates could not be
observed. Indeed, it would even be harmful, as it would
violate partition isolation discussed later in this section.

Setting c1 by hand may be burdensome for the program-
mer. Since it is not that important in our benchmarks, our
implementation provides a binary WINDOW(c0, `0) that ex-
pands to WINDOW(c0, `0, c0). An simple alternative imple-
mentation would be for the compiler to generate a c1 that
is the combination of all input streams.

Pre. The PRE construct makes it possible to record values—
PRE(c0, c1, `0) ticks when c1 does returning the value of c0
at the previous tick of c1. If c1 ticked only once so far or c0
was absent at the previous tick of c1, it returns `0 instead.

PRE is useful for constructing state machines via feedback
loops, for instance, to derive the value of a cell from the
previous value of the same cell. In fact, all cyclic depen-
dencies in a spreadsheet must use PRE, because other cy-
cles lack well-founded semantics. Our previous paper [42]
demonstrates that spreadsheets free of cyclic immediate de-
pendencies have well founded semantics. Formally, a spread-
sheet S is well-formed if the directed graph G of immediate
dependencies in S is acyclic, where the vertices of G are the
cells in S and there exists an edge (c, c′) in G if c′ ∈ deps(c)
(see Figure 4). PRE has no immediate dependency on its first
argument. The ticks and values up to time t of the cells of
a well-formed spreadsheet S are defined via a well-founded
recursion from the ticks and values of the input streams of S
up to time t.

This work adopts the same approach and simply adds that
a window depends on its arguments: deps(c) = {c0, c1} if
c 7→ WINDOW(c0, `0, c1). Because of this immediate depen-
dency WINDOW cannot replace PRE to build a spreadsheet
with cyclic dependencies. While both constructs encapsu-
late memory, they serve different purposes: PRE with its
built-in delay is meant for feedback loops whereas WINDOW
is intended for on-the-fly data aggregation.

Partitioning. Partitioning is enforced by the specification
of Ts:`(c, t) when c maps to an input-stream formula s0. The
condition s(t0) = ` masks the ticks of s0 that occur while
the most recent value of the partitioning stream s is not `.
By induction, computations in partition ` only depend on

input values received when s(t0) = `.
In a sense, this semantics maintains one hidden instance of

the spreadsheet for each partition. At any point in time, only
the instance corresponding to the current value of the parti-
tioning stream receives new input values and is updated ac-
cordingly. The other instances lie dormant and unchanged.
The spreadsheet collects all the updates from all the hidden
instances by merging them in order. One input value can
only trigger computation in one partition. By induction,
values computed for distinct partitions have distinct times-
tamps, hence the ordered merge is unambiguously defined.
An equivalent interpretation of this specification is that all
cells in the spreadsheet persist not just a single value, but
rather a map from partitions to values.

Our approach to partitioning guarantees partition isola-
tion [44], i.e., the combination of two properties:

• Temporal isolation: computations for distinct parti-
tions cannot happen at the same time.

• Spatial isolation: computations for distinct partitions
depend on disjoint sets of input values.

Formally, given a spreadsheet S with partitioning stream
s and distinct partitions `0 and `1, we establish:

Theorem 1. The intersection of Ts:`0(c, t) and Ts:`1(c, t)
is empty for any cells c in S and time t.

Proof Sketch. Corollary of t0 ∈ Ts:`(c, t) ⇒ s(t0) = `.
Proof by induction on the structure of Ts:`.

Theorem 2. Adding, removing, or replacing the value of
an input stream s0 at time t0 such that s(t0) = `0 does
not affect the semantics Ts:`1(c, t) and Es:`1(c, t) of partition
`1 6= `0 for all cells c in S and time t.

Proof Sketch. For input-stream formulas, if c0 7→ s0
and c1 7→ s1 and s(t0) = `0 and dom(s1) is the disjoint
union of dom(s0) and {t0} and s1(t) = s0(t) for all t ∈
dom(s0) then Ts:`1(c0, t) = {t ∈ dom(s0)∩ [0, t]|s(t) = `1} =
{t ∈ dom(s1) ∩ [0, t]|s(t) = `1} = Ts:`1(c1, t) for all t since
s(t0) = `0. Moreover Es:`1(c0, t) = s0(max(Ts:`1(c0, t))) =
s0(max(Ts:`1(c1, t))) = s1(max(Ts:`1(c1, t))) = Es:`1(c1, t)
for all t since max(Ts:`1(c1, t)) ∈ dom(s0). For other formu-
las the result follows by structural induction over the mu-
tually recursive definitions of Ts:` and Es:`. This recursion
is well-founded for well-formed spreadsheet (see [42] for a
proof of well-formedness).

While the amount of state in a spreadsheet depends on
the number of partitions, the amount of computation does
not. Moreover, the state is partitioned and the partitions
can be maintained independently from one another.

Following our prior work [42], we also establish that the
semantics of a spreadsheet can be computed incrementally
over time. Informally, at each tick t of an input stream, the
set of cells to recompute and the resulting values depend
only on the input values at time t and the current state of
the spreadsheet—the values of the cells and the values stored
by each occurrence of PRE.

The space and time complexity of the incremental com-
putation can be large because of partitions and windows.
Large numbers of keys and large windows can result in a
lot of data. Computing aggregates can therefore become a
bottleneck. Section 4 discusses how to parallelize computa-
tions across partitions and incrementalize computations over
windows to mitigate the cost of these new capabilities.
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1 stream<Bargain> Bargains = SpreadSheet(Trades; Quotes) {
2 param
3 spreadsheet : "vwap.xls";
4 inputs : {
5 A3 =Trades.sym, B3 =Trades.price, C3 =Trades.vol,
6 A12=Quotes.sym, B12=Quotes.price, C12=Quotes.seller};
7 partitionByLHS : Trades.sym;
8 partitionByRHS : Quotes.sym;
9 timeByLHS : Trades.ts;

10 timeByRHS : Quotes.ts;
11 output
12 Bargains :
13 sym =RString("E12"), seller =RString("F12"),
14 vwap=Float64("G12"), bargain=Boolean("H12");
15 }

Figure 5: Configuring SPL’s spreadsheet operator
for the spreadsheet in Figure 2.

4. SPREADSHEET COMPILATION
This section presents a compiler that implements the for-

mal semantics from Section 3. This is the first published
compiler for streaming spreadsheets, and the first implemen-
tation of partitioning and time-based windows in streaming
spreadsheets.

4.1 Overview
In the scenario that we envision, the user writes a spread-

sheet and describes where it fits in a larger stream program,
i.e., how it connects to other upstream and downstream op-
erators. To support end-users, a simple harness may be
pre-defined or auto-generated to input data into and output
data from the spreadsheet (e.g., following Chang and My-
ers’s user interface [13]). This paper uses stream programs
written in SPL [22], but the approach could be adapted to
other streaming languages. A stream program describes a
directed graph of streams and operators. Each stream is
a conceptually infinite ordered sequence of tuples, where a
tuple is a record with named attributes. Each operator is
a source, a sink, or a stream transformer. The program
configures the operators and arranges them in a graph.

Figure 5 shows an example for how to configure a spread-
sheet as an operator for a larger stream program in SPL.
Line 1 connects the operator to an output stream Bargains
and two input streams Trades and Quotes. Line 3 names the
file containing the actual spreadsheet from Figure 2. Lines
4–6 assign attributes of input tuples to spreadsheet cells.
Lines 7–10 identify the attributes serving as timestamps for
time-based windows and as partitioning keys. (Note that
timestamps and keys need only be specified when the user
wants to take advantage of time-based windows and parti-
tioning, respectively.) Finally, Lines 12–14 assign spread-
sheet cells to attributes of output tuples. The SPL devel-
opment environment provides wizards for configuring oper-
ators without having to enter the SPL code by hand.

The spreadsheet compiler, described below, is indepen-
dent of SPL. It reads the spreadsheet file and generates opti-
mized C++ code for it. Figure 6 depicts how the spreadsheet
compiler is used in the context of SPL. The SPL compiler
is extensible with a library of operator generators; it parses
the SPL program and performs some checks, but delegates
the compilation of individual operators to the correspond-
ing code generators. Specifically, when the SPL compiler
encounters a use of the spreadsheet operator, it invokes the
spreadsheet operator generator. The spreadsheet operator
generator checks and resolves names and types of parame-
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Figure 6: Compiling spreadsheets used from SPL.

ters and input/output assignments. If there are no errors,
it invokes the spreadsheet compiler. In addition, it gener-
ates surrounding code for calling the cell setters, cell getters,
and computing functions produced by the spreadsheet com-
piler. The resulting code is then linked with the C++ code
produced by all the operator generators and with the SPL
runtime library to yield binaries that can execute on either
a single machine (typically a multi-core) or on a cluster of
machines.

4.2 Design Considerations
Overall, the spreadsheet compilation is faithful to the for-

mal semantics in Section 3. Conventional spreadsheet func-
tions (represented by φ in the semantics) are pure and deter-
ministic.1 Most spreadsheet processors come with rich func-
tion libraries, but a small subset accounts for most practical
uses. Our current research prototype implements relatively
few functions, but can be easily extended with additional
functions as needed. Computed cell references are only sup-
ported via Excel’s INDEX, VLOOKUP, and MATCH functions,
all other references must use explicit cell names.

The supported types are floating point numbers, strings,
Booleans, and errors. As is typical in spreadsheet proces-
sors, functions are total and handle all types, producing or
forwarding error values as needed. The calculus constructs
PRE, WINDOW, and SELECT are exposed to the spreadsheet
programmer as new functions. We check at compile time
that results of invocations of WINDOW can only flow into ag-
gregation functions that return a simple scalar, such as SUM,
COUNT, or AVERAGE. This means that consistently with the
formal calculus, windows cannot nest, and can be thought
of as enforcing a simple type system on functions.

Our calculus and implementation rely on universal par-
titioning, where either no input streams are partitioned, or
all input streams are partitioned using the same key type.
Universal partitioning is sufficient but not necessary for par-
tition isolation. This enables an implementation where par-
titioning is handled entirely by the operator in the stream
graph and the spreadsheet compiler is oblivious to it. Note
that different operators in the stream graph can be parti-
tioned differently.

Timestamps needed by time-based windows are given by
attributes of input tuples. All attributes of a single tuple

1The overwhelming majority of typical spreadsheet func-
tions have these properties. Exceptions such as RAND are
not currently supported.
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are synchronous with each other. The tick of an output is
defined as specified in the formal semantics in Section 3. In
particular, upon a given input, not all outputs necessarily
tick. The ticking outputs are determined by static depen-
dencies (cell references) and dynamic dependencies (uses of
SELECT). Our implementation submits an output tuple if at
least one of the cells feeding its attributes ticks.

Our calculus and implementation rely on universal time,
where time is strictly monotonically increasing across all in-
put streams. Universal time is easy to establish in the com-
mon case where there is only a single input stream, but is
inherently difficult when there are multiple input streams,
such as Trades and Quotes for computing a bargain. This dif-
ficulty stems from clock skew in distributed systems: time-
stamps of tuples from different remote sources cannot be
assumed to be based on the same clock.

This problem is well-recognized in the streaming litera-
ture, and there are different solutions. Srivastava and Widom
describe a solution that waits for tuples that are slightly out
of order, while dropping and logging tuples that are sub-
stantially out of order [37]. There are other cases where
the problem is easier to solve; for instance, if input streams
lack a sender-assigned timestamp attribute, the receiver can
inject timestamps satisfying universal time. External time
management is orthogonal to spreadsheet compilation. The
experiments in this paper simply use test input streams that
satisfy universal time by construction. To support different
time management solutions, our SpreadSheet operator can
be configured to either fire immediately on each tuple, or to
only use tuples for setting input cells, but delay firing until
punctuations [41].

4.3 Spreadsheet Compiler
The spreadsheet compiler is implemented as a Java appli-

cation that consumes a spreadsheet in Microsoft Excel for-
mat and generates a C++ class that stores the state of the
sheet and can perform its computation. The compiler also
requires as arguments a specification of input and output
cells. The input cells are passed as a list of lists, represent-
ing the mapping of input streams, each with its own list of
attributes, to cells in the spreadsheet.

The compiler front-end leverages Apache’s POI library [3]
to process Excel spreadsheets in their original binary for-
mat. After parsing, spreadsheets are internally represented
as sets of key-value pairs. The compiler applies a series
of standard phases (expression flattening, constant propa-
gation, and dead code elimination), introducing additional
synthetic cells when necessary.

After normalization, the compiler computes, for each cell,
a conservative over-approximation of the set of input streams
for which it ticks. In the absence of SELECT, this set can be
computed exactly; but after SELECT, an output cell may
dynamically skip a tick of an input cell it depends upon
statically. The computation follows the semantics described
in Section 3: constants never tick, PRE cells tick when their
second argument ticks, SELECT cells tick when their second
argument ticks and evaluates to TRUE with the value spec-
ified in their first argument, and all other cells (including
WINDOW cells) tick when any of their arguments ticks.

Using this information, the compiler generates, for each
input stream, a function that propagates the computation
through all ticking cells. This function operates in two steps:
it first updates all cells that contain an invocation of PRE,

copying parts of the previous state as appropriate, then com-
putes the new values for all other cells. PRE cells can po-
tentially reference each other in cycles, and updating their
values may require additional temporary memory (at most
the number of such cells). Other cells, by construction, do
not have cyclic dependencies, and the compiler emits code
that updates them in-place, following a topological ordering
of their dependency graph. For a spreadsheet with p invo-
cations of PRE and n other cells, the generated class will
therefore need to store at most 2 ·p+n values (not counting
time-based windows). The actual storage requirements are
reduced by an optimization phase that identifies cells occur-
ring in a single propagation function and promotes them to
temporary, locally-allocated, variables.

The generated code is supported by a companion C++
library for manipulating spreadsheet values. Values are rep-
resented using a single universal type encoded as a tagged
union. Spreadsheet functions (IF, SUM, etc.) are written
in header-only, templated code, such that the output of the
spreadsheet compiler can be properly optimized when passed
to the C++ compiler. For instance, functions of variable ar-
ity such as SUM are implemented using loops, but the loop
bounds are always determined statically and passed as tem-
plate arguments. The language of supported spreadsheet
functions is extended simply by writing C++ implementa-
tions for the desired functions.

The compiled class exposes public member functions serv-
ing three purposes: 1) setters, used to communicate new
values to fill input cells, 2) compute, used to trigger the re-
computation of the spreadsheet, and 3) getters, used to re-
trieve the values of output cells. The protocol for a client to
process a tuple from a stream is to first invoke the setters
corresponding to each attribute, then trigger the computa-
tion, and finally to inspect the values of the desired out-
put cells. The getters accept as a parameter a pointer to
a Boolean, allowing the compiled spreadsheet to communi-
cate to the client whether the output value has ticked since
the last inspection. In the case of a spreadsheet using time-
based windows, the timestamp corresponding to the tuple
arrival time is passed as an argument to compute.

4.4 Time-Based Windows
Recall that the results of windows can only flow into ag-

gregation functions. In a streaming spreadsheet, aggrega-
tion functions are functions with a window argument that
return a scalar. Besides traditional streaming aggregations
familiar from databases [39], such as SUM(w) or AVERAGE(w),
this also encompasses common spreadsheet functions, such
as COUNTIF(w,v) or INDEX(w,i). These spreadsheet functions
differ from traditional aggregations in that they may have
additional non-window arguments. Furthermore, in our ex-
perience, it is common for multiple aggregates to refer to the
same window: the formula COUNTIF(w,INDEX(w,COUNT(w)))=1
checks whether the last number inserted into window w is
unique. This formula can be used to encode the IStream op-
erator from stream-relational algebra [4].

The requirements for our implementation of windows are
therefore that they should be incremental (their time com-
plexity should be sub-linear in the window size |w|) and
irredundant (the window should be shared among multiple
aggregates whenever applicable, and updating the window
of an aggregate should be separate from updating its non-
window parameters). To accomplish this, we support win-
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Function Description Data
structure

Time,
Space

SUM(w) Total of the num-
bers in w.

Float O(1),
O(1)

AVERAGE(w) Arithmetic mean of
the numbers in w.

Two
floats

O(1),
O(1)

COUNT(w) Number of ele-
ments in w with
numbers.

Integer O(1),
O(1)

COUNTIF(w, v) Number of ele-
ments in w that
equal v.

Hash
multi-set

O(1),
O(|w|)

INDEX(w, i) Element of w at in-
dex i, where 1 is
the oldest.

Resizable
circular
buffer

O(1),
O(|w|)

MATCH(v, w, m) Index of element
equal to v in w if m
is 0 (exact match).

Tree
multi-map,
integer

O(log |w|),
O(|w|)

LARGE(w, k) Number in w that
is the kth largest,
where 1 is the max.

Order
statistics
tree

O(log |w|),
O(|w|)

Table 1: Incremental sliding-window aggregations,
where w is the window and |w| is the window size.

dows and aggregations by a Window class and an Aggregate
class with its subclasses in the companion C++ library. A
Window object maintains a FIFO buffer of time/value pairs,
as well as the elements evicted and inserted in the current
tick. Each Aggregate object holds a constant pointer to its
base window and maintains a data structure for fast incre-
mental aggregation.

Table 1 lists supported aggregations with their signature,
description, data structure, and algorithmic complexity. The
time complexity is the worst-case of evict, insert, or com-
pute calls (typically, these three have the same complexity).
Our implementation of MATCH currently only supports mode
m = 0, which implements exact matches. It uses a map from
values to stable indices, which are the indices an element
would have if there were no evictions. To obtain the actual
index, subtract the total number of evictions that happened
so far. Our implementation of LARGE uses an order statis-
tics tree, which is a balanced search tree where internal nodes
track statistics of the sizes of their subtrees.2 Since elements
in a search tree are ordered, a single root-to-leaf traversal
can find the kth largest element using these statistics.

Subclasses of Aggregate offer separate methods update and
apply. When a window changes, the update functions of all
dependent aggregates are called. They query the window
for the elements evicted and inserted in the current tick
and update their data structures accordingly. The argu-
ments to the apply function consist of the latest values of
all non-window inputs to the aggregation. For example, the
inputs to COUNTIF are a window w and a value v, and there-
fore, COUNTIF::apply has one argument, the value v. In other
words, the apply functions are curried on the window argu-
ment. The apply function gets called each time the aggregate
ticks, i.e., each time any of its inputs ticks.

4.5 Runtime Support
Figure 7 shows a SpreadSheet operator generated by the

compilation depicted in Figure 6 in the context of a simple
stream graph. The Import and Export operators can be based
on TCP; or can use pub-sub when business users create ad-

2https://en.wikipedia.org/wiki/Order statistic tree
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Figure 8: Stream graph with parallel spreadsheet
operator.

hoc spreadsheets [16]; or can contain local input generators
and output validators for testing purposes. The TimeManager
establishes universal time as discussed above.

The state of a partitioned spreadsheet operator holds a
mapping from keys (e.g. “ACME”) to spreadsheet states (e.g.
s[“ACME”]). A spreadsheet state holds the values of cells that
did not tick along with any data required to implement PRE
and WINDOW. When an input tuple arrives, the spreadsheet
operator extracts the key, retrieves the spreadsheet state,
and calls the appropriate cell setters. Upon a firing (trig-
gered by an input tuple or punctuation), the operator calls
compute on the spreadsheet state for the given key, and sub-
mits tuples on output streams corresponding to output cells
that ticked, if any. In general, the stream graph can of
course also contain more operators than shown in Figure 7,
such as operators that parse XML or enrich streams with
quasi-static information from a database.

Partitioning can be exploited for parallelization [24]. Fig-
ure 8 shows a version of Figure 7 that adds parallelism by
using multiple replicas of the Spreadsheet operator. We re-
fer to each replica along with its sub-streams as a parallel
channel. For illustration purposes, Figure 8 shows only two
channels, but in general, the number of channels is a trade-
off between speedup and resource consumption. The Hash-
Split operator sends each tuple to a channel determined by its
key. That guarantees that tuples with the same key always
go to the same channel, and thus, the Spreadsheet operator
in each channel holds the correct spreadsheet state. Since
state is disjoint, no inter-channel communication is required.

Tuples within a single channel are delivered in order, but
tuples in different channels may be out-of-order depending
on processing and communication speed. Therefore, the
stream graph contains an OrderedMerge operator that inter-
leaves tuples from all channels in an order consistent with
their timestamp attributes. Note that the sequence of time-
stamps can have gaps but no duplicates, since our formal
semantics enable sampling but not stuttering. The Ordered-
Merge maintains one FIFO queue per channel. When it re-
ceives a tuple, it inserts it to the corresponding queue, and
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cells exprs windows partition
vwap 9 14 2x5m ticker
twitter 22 36 3x5m lang
linearroad 20 18 3x30s & 2x5m segment
average 33 27 2x6 –
kalman 14 21 2x2 target id
tax 21 37 – –
pong 35 86 – game id
forecast 43 60 2x6 location

Table 2: Benchmarks.

then drains all queues as much as possible. It can drain
(dequeue and submit) a tuple if its timestamp is minimal
among all tuples at the front of channel queues and there
is no empty queue. The latter requirement guarantees that
there are no tuples with smaller timestamps in-flight on any
channel whose queue is currently empty. To avoid deadlock,
the channel queue sizes are dynamic; an alternative solution
would be to periodically flush all channels [28].

5. EXPERIMENTAL STUDY
We evaluate our approach with respect to the following

questions:

RQ1. Are spreadsheets a suitable programming model for
applications handling unbounded data sets?

RQ2. Do compiled spreadsheets approach the performance
of hand-written code?

RQ3. How do time-based windows affect performance?

We consider a number of benchmarks, described below.
We wrote SPL benchmarking harness code around the spread-
sheets following the illustration in Figure 6. The following
sections describe the benchmarks (5.1), report the perfor-
mance results (5.2), and quantify the impact of incremental
window updates on performance (5.3). We conclude by men-
tioning threats to the validity of our conclusions, including
a discussion of parallelization (5.4).

5.1 Benchmarks (RQ1)
The vwap example was described in Section 2. It uses

both time-based windows and stock-ticker based partitions.
The twitter example computes the top-k languages with
the most verbose tweets over 5 minute windows. The appli-
cation is composed of two spreadsheets: the first calculates
the average length of tweets for every language in a 5-minute
time-frame, and the second sorts these to display the top-k
languages with the most verbose tweets. The linearroad
example is a vehicle toll system for expressways with vari-
able toll rates. Our implementation assumes a partitioning
by road segments as this is the most natural to implement
in the spreadsheet. It follows the design sketched in [4].
The average example calculates a recency-weighted aver-
age. The kalman example implements a Kalman filter to
estimate the state of a system based on a stream of noisy
and inaccurate measurements [26]. The computation of the
estimation depends on past values, and in our spreadsheet
we use PRE to retain this state. The tax example calcu-
lates progressive income taxes using a table to encode tax
brackets. The pong example calculates a 2D line intersect
to play the game Pong, i.e., to position the paddle to catch
the ball. It assumes a single incoming stream of positions

SS SPL SS/SPL
Ktps Ktps

vwap 960.61 399.39 2.41
twitter 45.91 30.06 1.52
linearroad 964.32 798.72 1.21
average 3,937.01 8,000.00 0.49
kalman 3,816.79 8,196.72 0.47
tax 1,383.13 4,975.12 0.28
pong 480.77 3,937.01 0.12
forecast 913.24 7,936.51 0.12

Table 3: Throughput results.

and velocities for all the games currently being played and
uses partitioning by game id to separately keep track of the
state of each game. Finally, the forecast example per-
forms linear regression using least-square fit to predict fu-
ture temperatures.

The benchmarks are summarized in Table 2. For each
example, we show the number of cells needed to encode the
computation in the spreadsheet (aggregating the numbers
for both spreadsheets for twitter) as well as the number
of live expression nodes in the abstract syntax tree after
dead-code elimination, e.g., a cell containing the equation
(A1*A2)+(B1*B2) results in three expression nodes.

In Table 2, the window column reports the number and
size of each window in the benchmark as NxW where N is
the number of windows and W is the size of the windows
either in time or number of historical values, e.g., 2x5m rep-
resents 2 windows, each of which is 5 minutes long, and 2x6
represents two windows, each containing 6 historical values.
The partition column records the attribute used for parti-
tioning the input stream.

Our benchmarks are all expressed concisely, and mirror
applications from a variety of domains: finance, analytics,
Internet-of-things, and engineering.

5.2 Spreadsheet Throughput (RQ2)
We compiled each spreadsheet and ran it as part of an SPL

test harness on a 2-processor machine with 32 GB of RAM
running Red Hat Enterprise Linux Server release 6.5. Each
processor is a 2.93 GHz Intel Xeon X5570 with 4 cores and
8 hardware threads. The experiments were repeated 5 times
and the arithmetic mean throughput is reported throughout.
We created the input sets using real traces when available
and synthetically generated data otherwise.

We report the throughput for each benchmark (SS) in
Kilo tuples per second (Ktps). This is calculated by record-
ing the total time spent in the code corresponding to the
spreadsheet, including the cost to read and write data from
the I/O streams. Every benchmark processed a total of 1M
input tuples. The results are shown in Table 3. For each
benchmark, we manually wrote an equivalent, pure SPL,
implementation. We measured the throughput for these im-
plementations as above and report it under the heading SPL.

The last column in the table computes the ratio between
the SS and SPL throughputs such that a value less than one
indicates the compiled spreadsheet is slower than SPL and
conversely a value greater than one indicates the compiled
spreadsheet is faster.

The last five compiled spreadsheets are 2x to 8.7x slower
than SPL. Given that SPL is a state-of-the-art system de-
signed for very high frequency and low latency applications
such as real-time trading, these results are not bad. We at-
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tribute most of the slow-down to dynamic type checking and
type conversions to and from a tagged union. Three of the
compiled spreadsheets (vwap, twitter, and linearroad)
are respectively 1.52x, 2.41x, and 1.21x faster than the cor-
responding hand-written SPL code. We attribute this to
extra inter-operator communication in the SPL case, where
the SPL code uses multiple operators for a computation that
is implemented in a single compiled streaming spreadsheet.
The average slowdown compared to SPL is 2x (geometric
mean over all the benchmarks).

5.3 Performance of Window Updates (RQ3)
The three test cases with unbounded windows are vwap,

twitter and linearroad. For these we measured the im-
pact of incremental window updates, by measuring through-
put with incrementalization disabled. The impact depends
on the occupancy of a window: for instance, the average
occupancy of a window for vwap is 7,800 trades and the
incremental updates resulted in a 6.8x speedup end-to-end.
For linearroad, we measure a 83x speedup. The windows
in twitter have lower average occupancy and the effect of
incrementalization is negligible.

Our hand-written SPL codes for the benchmarks also im-
plement incremental window updates. In contrast to our
compiler however, incrementalization in SPL was done man-
ually for each aggregate, adding more SPL operators to the
stream graph.

5.4 Threats to Validity and Parallelization
A critical reader may argue that our benchmarks are not

production-ready applications. Obtaining suitable applica-
tions is a challenge, in part because of the novel propo-
sition of making programming with streams accessible to
end-users. We have strived to collect proxy applications for
a variety of domains which we anticipate will provide the
first adopters of our work.

Our baseline consists of hand-written SPL programs. With
additional effort, they could have been made to perform bet-
ter. However, we believe they are representative for what a
typical skilled SPL developer would come up with.

Because of the relatively small size of the benchmarks,
our experiments do not demonstrate the performance ben-
efits of parallelization; for all benchmarks in Section 5.1,
the overhead of parallelization dominates compared to the
time spent in computations (for both the SPL and compiled
spreadsheet versions). To assess the potential of parallel
scalability, we have devised a computation intensive bench-
mark. It uses 400 cells to compute RGB pixel values of a
visualization of the Mandelbrot set. For this benchmark,
more channels yield higher throughput (see Figure 9).
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Figure 9: Parallel speedup for Mandelbrot.

6. RELATED WORK
We discuss spreadsheets as a programming platform, pro-

gramming models for streaming, models of time, and finally
windows and partitions in the context of streaming systems.

Only few prior efforts use spreadsheets for stream com-
puting. The ActiveSheets paper was similar to this paper
in that it formalized a calculus and implemented a server
that enabled both data export and computation export [42].
Data export makes values computed by a spreadsheet avail-
able as a stream, and computation export extracts formulas
of a spreadsheet client to run on a server. Chang and My-
ers also present streaming spreadsheets with a focus on the
user interface [13]. Whereas both of these earlier papers
implemented the server as an interpreter, this paper uses
a compiler. Furthermore, this paper introduces time-based
windows and partitioning, neither of which were present in
the earlier work. Since the earlier work lacked these fea-
tures, it could not capture applications like VWAP in their
full generality. We also published a 2-page workshop paper
with a vision for time-based windows and partitioning, but
that paper lacked formal semantics, an implementation, or
an evaluation [23].

McGarry introduced a delay-line object for streaming spread-
sheets, which can be viewed as a count-based sliding win-
dow [31]. StreamBase streamed data both in and out of
a spreadsheet, but did not export computation [38]. In
contrast, Cloudscale exported stream computation from a
spreadsheet, but the computation was not specified by spread-
sheet formulas [14]. Finally, Woo et al. used spreadsheets to
visualize data from sensor networks, and offered count-based
sliding windows [43]. None of these offered time-based win-
dows or partitioning.

There is a long history of scholarly articles on spreadsheets
in the areas of user interfaces, programming languages, and
software engineering. They share our motivation, recogniz-
ing that many end-users are familiar with spreadsheets, and
thus, spreadsheets can enable domain expert to develop sim-
ple applications. Sajaniemi and Pekkanen did an empirical
study on 135 Lotus 1-2-3 and Symphony spreadsheets [34].
Among other things, they found that the most common func-
tions were IF, SUM, and ROUND, which means that even 28
years ago, selection and aggregation already played a big role
in spreadsheets. Several papers pursued the idea of putting
advanced code in spreadsheet cells [15, 27, 30, 33]. In func-
tion spreadsheets, a worksheet defines a function that can be
called from elsewhere [6, 36]. FlashFill [19] and NLyze [20]
synthesize spreadsheet code from examples and natural lan-
guage. CheckCell offers data debugging for spreadsheets [7].
Gneiss uses spreadsheets to create web applications [12]. Un-
like our work, none of these papers feature streaming spread-
sheets, partitioning, or time-based windows.

Languages like Lustre [11], StreamIt [18], CQL [4], and
SPL [22], or libraries such as Spark Streaming [45], enable
seasoned programmers to express sophisticated streaming
applications. At the other end of the spectrum, environ-
ments like Mario [10], if this then that [25], or Controlled
English [5, 29] require little to no programming experience
and enable end-users to specify simple streaming applica-
tions in intuitive ways. Streaming spreadsheets offer a sweet
spot between these extremes, being both flexible and famil-
iar to the end-users.

The formalization of time in this paper follows from syn-
chronous programming languages [8]. Outputs are produced
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instantly so that inputs and outputs are formally synchronous.
While traditional synchronous models, including the original
ActiveSheets paper, consider time to be an abstract quan-
tity, we measure time. In other words, we give a meaning
not only to t0 < t1 but also to t1 − t0.

Partitioning is a central feature in many streaming sys-
tems and languages. Systems that use a dialect of SQL for
streaming, such as CQL [4] or StreamInsight [2], usually al-
low the user to specify any tuple attribute for partitioned
windows and aggregations. Likewise, SPL allows using reg-
ular tuple attributes for partitioning; while this feature is
motivated by functionality, it can also be exploited for par-
allelism [35]. All stream data items for Spark Streaming are
key-value pairs, and this knowledge is baked into the de-
sign at a fundamental level [45]. In MillWheel, users specify
a key extraction function for partitioning [1]. And finally,
Storm relies on partitioning for parallelism, using the term
field grouping to refer to a partitioned shuffle [40]. Our work
is similar to these prior papers in that it brings partitioning
to the forefront and enables parallelization based on parti-
tioning. But none of these prior papers applies partitioning
to streaming spreadsheets.

Time-based windows are widely used in stream processing
systems, even when those systems do not support them as
a built-in feature. CQL has a built-in notion of windows:
it uses windows to transform streams to relations before
applying relational operators from the database world [4].
In StreamInsight, each stream data item carries two times-
tamps, one for insertion and the second for retraction, thus
implementing a window [2]. SPL offers a windowing library
to make windows available to user-defined operators [17].
MillWheel [1] and Storm [40] do not explicitly provide win-
dows, but interestingly, in both cases the papers include ex-
amples that implement windows by hand on top of a lower-
level API. By building sliding windows into our design, we
make it easier to take advantage of incremental aggregation.
None of these prior papers applies sliding time-based win-
dows to streaming spreadsheets. There are many different
variants of sliding windows [9, 17]; future work could extend
ActiveSheets to support more options.

7. CONCLUSIONS
We presented enhancements to streaming spreadsheets with

time-based windows and partitioning, features that manip-
ulate unbounded data sets and overcome the finite nature of
the interface. Our enhanced spreadsheet is expressive, yet
easy to use for non-programmers. We provide a compiler
to C++ to facilitate integration with existing stream pro-
cessing systems, such as Node-RED and IBM Streams. We
presented a variety of benchmarks to illustrate the expres-
sivity of our programming model and the efficiency of the
compiler implementation.
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