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What is the need for state sharing in stream processing systems? 

! !Control Variables 
–!In a long running System S application, a user may want to modify the behavior of some 

operators at runtime 

–!Examples: filtering threshold, routing behavior, lookup tables etc. 
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What is the need for state sharing in stream processing systems? 

! !A shared runtime repository of interesting events 
–!Operators collaborate to detect and follow-up on interesting events observed by the 

application 

–!Examples: intrusion detection 

Motivation 
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Why not use System S to propagate updates? – Control spaghetti 
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Motivation 
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Efficient state sharing in stream processing systems - Why is it hard? 

! !Ease-of-use & Flexibility 
–!Many System S users are domain experts and/or analysts with sufficient but not a deep 

understanding of issues related to distributed shared state. 
–!System S is used for a range of applications (e.g. healthcare, telecommunications, 

finance, etc.) that have very different expectations from shared state implementation. 

! !Scalability, High-Performance & Fault-Tolerance 
–!The state sharing mechanism should be such that it limits the impact on the scalability 

and performance of the System S application. Also, the exposure of the user to issues 
like fault-tolerance of the shared state  should be minimized. 

! !Relaxed Consistency Guarantees 
–!Given the fact that many System S applications do not require atomic consistency for 

access to the shared state, the state sharing mechanism should be able to exploit the 
relaxed consistency requirements for enhanced scalability and/or performance. 
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Design considerations 
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Ease-of-use & Flexibility 
SPADE language constructs 

 

What were we thinking? 
Provide flexibility to users while maintaining the ease of use 

 

Detailed design 
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Ease-of-use & Flexibility: SPADE language constructs 

sharedVarDef  ::= sharedVarModifier * type  ID ( = expr  )? sharedVarConfigs  

sharedVarModifier  ::= ‘public’ | ‘static’ | ‘mutable’ 

sharedVarConfigs  ::= ‘;’ | ‘{’ ‘config’ configuration + ‘}’ 

 

! !public – may be used from anywhere in the system 

! !static – all instance of the operator defining the shared variable will share the same copy 

! !mutable – can be modified 

! !configuration  – name-value pair 

Detailed design 
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Example usage 

composite CompositeWithSharedVariables (Output out; Input in){ 

 var   int32 s_thresh  = 10; 

   public static mutable map<string8, int32> s_map { 

         config   lifetime       : eternal; 

          consistency   : causal; 

    sizeHint  : 1024 * 128 * 128; 

       } 

 graph  stream<In> X = ClassiferX (In){ param  cMapX  : s_map; } 

  stream<In> Y = ClassiferY (In){ param  cMapY  : s_map; } 

  stream<In> Out = Functor (X,Y){ param  filter : x > s_thresh ; } 

} 

Detailed design 
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Once the shared variables are defined in a SPADE program… 

+

Shared Variable Servers & SVDL 
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Compile Time 
Shared variable data types 

 

What were we thinking? 
State sharing should be transparent 

Shared Variable data types should be oblivious of the transport and/or protocol 

 

Detailed design 
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A view of Shared Variable from 30,000 feet 
Detailed design 
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A view of Shared Variable from 20,000 feet 
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Client / Server side data types and invoke interface 

Stub Side Data Type Server Side Data Type 

invoke 
Interface 

void invoke( int  methodIndex , Buffer inParams , Buffer outParams ); 
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*= /= %= 

++    -- 
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int32 get(); 

void set(int32); 

int32 add(int32); 

int32 subtract(int32); 

int32 multiply(int32); 

int32 divide(int32); 

int32 modulo(int32); 

SVInteger  

Implements 
invoke 
Interface 

Calls 
invoke 
Interface 

Detailed design 



© 2012 IBM Corporation 16 

Example Shared Variable data type 

! !Server side data type 

   SVIntegerServer<T> 

   [T = int8, int16, int32, int64] 

 

! !Stub side data type 

   SVIntegerClient<T,I> 

  ��  [T = int8, int16, int32, int64]  

   [I = SVBasicInterfaceCorbaClientImpl , É] 

Detailed design 
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Compile time 
Shared Variable transport and protocol 

 

What were we thinking? 

Should be usable with any compatible data client / server 

Detailed design 
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A view of Shared Variable from 20,000 feet 
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Shared Variable transport 

Stub Side Transport Server Side Transport 
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Shared Variable protocol implementation 

Protocol 
Implementation 
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Detailed design 
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Example Shared Variable transport and protocol 

! !Server side transport and protocol type 

   SVBasicInterfaceCorbaServerImpl<T> 

   [T = SVInteger , SVFloat , É] 

 

! !Client side transport and protocol type 

   SVBasicInterfaceCorbaClientImpl 

Detailed design 
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Compile time 
Shared variable servers, clients and the SVDL – putting it together 

Detailed design 
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Shared Variable stub 

Shared Variable 
Stub 

Stub side data type Stub side transport 

1. Operator utilizes the stub 
side data type assuming 
that it is a regular data 
type. 

e.g.   

++i  

2. The stub side data type serializes the parameters 
and translates the operation to an invoke call on the 
stub side transport 

e.g.   

Buffer inParams , outParams ; 

params  << 1; 

stub->invoke(ADD, inParams , outParams );  

3. The stub side transport, if needed, marshals the data to transport 
specific format makes a remote call to the transport server at the 
other end. 

e.g.   

remote->invoke( ADD,inParams,outParams,exception ); 

 

Detailed design 
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Shared Variable server 

Shared Variable 
Server 

Server side transport Server side data type 

1. Server side transport 
receives a call from the 
client side transport. 

2. The server side transport, if needed, unmarshals the data 
to Buffer  and calls invoke on the data server. 

e.g.   

server->invoke( ADD,inParams,outParams ); 

 

3. The server side data type deserializes the parameters 
and performs the appropriate operation on the contained 
data element 

e.g. 

inParams  >> temp; 

outParams  << this->add(temp); 

Detailed design 
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Shared Variable stub and server example 

 

 

SVIntegerClient<int32, SVBasicInterfaceCorbaClientImpl> 

 SVBasicInterfaceCorbaServerImpl<SVIntegerServer<int32>> 

Shared Variable 
Client 

Transport 

Shared Variable 
Server 

Detailed design 
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Shared variable description language (SVDL) 

! !Describes the composition of a shared variable 

! !Various constructs 
–!Base variable 

•! refers to a shared variable server, needs dll and location 
–!Variable group 

•! a protocol governed group of base variable, shared variable and / or variable group 
–!Shared variable 

•! contains a base variable or a variable group and has a name 

! !Is part of the Application Definition Language and is loaded by the Shared variable 
daemon at deployment time 

Detailed design 
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SVDL example 

<sharedVariable > 

    <name>A</name> 

    < variableGroup > 

        <protocol>Atomic</protocol> 

        < baseVariable > 

            < dll >/users/omega/ abc.so </ dll > 

            <location>192.168.2.101</location> 

        </ baseVariable > 

        < baseVariable > 

            < dll >/users/omega/ abc.so </ dll > 

            <location>192.168.2.102</location> 

        </ baseVariable > 

    </ variableGroup > 

</ sharedVariable > 

Detailed design 
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Implementation & Evaluation 

! !Besides the implementation of data types, we have a transport implementation 
based on CORBA.  

! !We have implemented 4 protocols – Atomic Master-Slave, Atomic Master-Slave 
with Buffer, Causal and Partitioned protocol. Other implementations will follow. 

! !The reported experiments were conducted on a 2 x dual core machines @ 3.0 
GHz with 8 GB RAM 

28 
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Comparison between performance of AMS and AMSB 
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Comparison between performance of AMSB and Causal protocol 
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Summary & Future Work 

! !Shared variables in System S attempt to exploit configuration parameters to code 
generate a customized implementation for higher performance 

! !Maintaining conformity to SPADE’s native data types makes it simple to program 
using Shared Variables 

! ! Initial scalability and performance results seem to be very promising 

! !Work is ongoing to determine the best heuristic that translates configuration 
parameters (e.g. readsPerSecond, writesPerSecond, consistency, etc.) to the 
most appropriate generated code for shared variables 

! !Work is ongoing to incorporate the dependency between various clients 
(operators) into the Shared Variable consistency model 
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Thank You! 


