
© 2012 IBM Corporation 

Language & System Support for Efficient State 
Sharing in Distributed Stream Processing Systems 
                                                   IBM T. J. Watson Research Center 

Giuliano Losa, Vibhore Kumar , Henrique Andrade, Bugra Gedik, Martin Hirzel, Robert Soule, Kun-Lung Wu 

17 July 2012 



© 2012 IBM Corporation 2 

Outline 

! !Motivation 

! !Design considerations 

! !Detailed design 

! !Implementation & evaluation 

! !Summary 



© 2012 IBM Corporation 3 

What is the need for state sharing in stream processing systems? 

! !Control Variables 
–!In a long running System S application, a user may want to modify the behavior of some 

operators at runtime 

–!Examples: filtering threshold, routing behavior, lookup tables etc. 
 

Motivation 

int threshold 

SPADE 
Operator 

System S 
Runtime 

CAPSULE 
Runtime 

Shared 
Variable  



© 2012 IBM Corporation 4 

What is the need for state sharing in stream processing systems? 

! !A shared runtime repository of interesting events 
–!Operators collaborate to detect and follow-up on interesting events observed by the 

application 

–!Examples: intrusion detection 

Motivation 

Repository 



© 2012 IBM Corporation 

Why not use System S to propagate updates? – Control spaghetti 

5 

Motivation 



© 2012 IBM Corporation 

Efficient state sharing in stream processing systems - Why is it hard? 

! !Ease-of-use & Flexibility 
–!Many System S users are domain experts and/or analysts with sufficient but not a deep 

understanding of issues related to distributed shared state. 
–!System S is used for a range of applications (e.g. healthcare, telecommunications, 

finance, etc.) that have very different expectations from shared state implementation. 

! !Scalability, High-Performance & Fault-Tolerance 
–!The state sharing mechanism should be such that it limits the impact on the scalability 

and performance of the System S application. Also, the exposure of the user to issues 
like fault-tolerance of the shared state  should be minimized. 

! !Relaxed Consistency Guarantees 
–!Given the fact that many System S applications do not require atomic consistency for 

access to the shared state, the state sharing mechanism should be able to exploit the 
relaxed consistency requirements for enhanced scalability and/or performance. 

6 

Design considerations 



© 2012 IBM Corporation 7 

Outline 

! !Motivation 

! !Design considerations 

! !Detailed design 

! !Implementation & evaluation 

! !Summary 



© 2012 IBM Corporation 8 

Ease-of-use & Flexibility 
SPADE language constructs 

 

What were we thinking? 
Provide flexibility to users while maintaining the ease of use 

 

Detailed design 



© 2012 IBM Corporation 9 

Ease-of-use & Flexibility: SPADE language constructs 

sharedVarDef  ::= sharedVarModifier * type  ID ( = expr  )? sharedVarConfigs  

sharedVarModifier  ::= ‘public’ | ‘static’ | ‘mutable’ 

sharedVarConfigs  ::= ‘;’ | ‘{’ ‘config’ configuration + ‘}’ 

 

! !public – may be used from anywhere in the system 

! !static – all instance of the operator defining the shared variable will share the same copy 

! !mutable – can be modified 

! !configuration  – name-value pair 

Detailed design 



© 2012 IBM Corporation 10 

Example usage 

composite CompositeWithSharedVariables (Output out; Input in){ 

 var   int32 s_thresh  = 10; 

   public static mutable map<string8, int32> s_map { 

         config   lifetime       : eternal; 

          consistency   : causal; 

    sizeHint  : 1024 * 128 * 128; 

       } 

 graph  stream<In> X = ClassiferX (In){ param  cMapX  : s_map; } 

  stream<In> Y = ClassiferY (In){ param  cMapY  : s_map; } 

  stream<In> Out = Functor (X,Y){ param  filter : x > s_thresh ; } 

} 

Detailed design 



© 2012 IBM Corporation 11 

Once the shared variables are defined in a SPADE program… 

+

Shared Variable Servers & SVDL 

Shared Variable Clients 

SPADE 
Compiler 

Shared Variable 
Configuration Model 

CAPSULE        
Code Generator 

Other System S Artifacts  

Processing Elements, etc. 

Runtime Information from 
CAPSULE daemons 

SPADE Developer 
Application Description Language (ADL) 

System S 
Runtime 

CAPSULE      
Daemons 

Data-Flow 
Deployment 

Shared Variable 
Deployment 

SVDL 

ADL 

Compile Time Runtime 

SPADE 
Program 

Detailed design 



© 2012 IBM Corporation 12 

Compile Time 
Shared variable data types 

 

What were we thinking? 
State sharing should be transparent 

Shared Variable data types should be oblivious of the transport and/or protocol 

 

Detailed design 



© 2012 IBM Corporation 13 

A view of Shared Variable from 30,000 feet 
Detailed design 

Shared Variable 
Client 

Transport 

Shared Variable 
Server 

SPADE Operator Shared Variable 



© 2012 IBM Corporation 14 

A view of Shared Variable from 20,000 feet 

Shared Variable 
Client 

Transport 

Shared Variable 
Server 

SPADE Operator Shared Variable 

Stub Side Data Type Stub Side Transport Server Side Transport Server Side Data Type 

Detailed design 



© 2012 IBM Corporation 15 

Client / Server side data types and invoke interface 

Stub Side Data Type Server Side Data Type 

invoke 
Interface 

void invoke( int  methodIndex , Buffer inParams , Buffer outParams ); 

+ -  * / 

%  += -= 

*= /= %= 

++    -- 

& |  ^ ~ 

int32 get(); 

void set(int32); 

int32 add(int32); 

int32 subtract(int32); 

int32 multiply(int32); 

int32 divide(int32); 

int32 modulo(int32); 

SVInteger  

Implements 
invoke 
Interface 

Calls 
invoke 
Interface 

Detailed design 



© 2012 IBM Corporation 16 

Example Shared Variable data type 

! !Server side data type 

   SVIntegerServer<T> 

   [T = int8, int16, int32, int64] 

 

! !Stub side data type 

   SVIntegerClient<T,I> 

  ��  [T = int8, int16, int32, int64]  

   [I = SVBasicInterfaceCorbaClientImpl , É] 

Detailed design 



© 2012 IBM Corporation 17 

Compile time 
Shared Variable transport and protocol 

 

What were we thinking? 

Should be usable with any compatible data client / server 

Detailed design 



© 2012 IBM Corporation 18 

A view of Shared Variable from 20,000 feet 

Shared Variable 
Client 

Transport 

Shared Variable 
Server 

SPADE Operator Shared Variable 

Stub Side Data Type Stub Side Transport Server Side Transport Server Side Data Type 

Detailed design 



© 2012 IBM Corporation 19 

Shared Variable transport 

Stub Side Transport Server Side Transport 

Implements 
invoke 
Interface 

Calls 
invoke 
Interface 

Transport 

Detailed design 



© 2012 IBM Corporation 20 

Shared Variable protocol implementation 

Protocol 
Implementation 

slave 

slave 

master 

Detailed design 



© 2012 IBM Corporation 21 

Example Shared Variable transport and protocol 

! !Server side transport and protocol type 

   SVBasicInterfaceCorbaServerImpl<T> 

   [T = SVInteger , SVFloat , É] 

 

! !Client side transport and protocol type 

   SVBasicInterfaceCorbaClientImpl 

Detailed design 



© 2012 IBM Corporation 22 

Compile time 
Shared variable servers, clients and the SVDL – putting it together 

Detailed design 



© 2012 IBM Corporation 23 

Shared Variable stub 

Shared Variable 
Stub 

Stub side data type Stub side transport 

1. Operator utilizes the stub 
side data type assuming 
that it is a regular data 
type. 

e.g.   

++i  

2. The stub side data type serializes the parameters 
and translates the operation to an invoke call on the 
stub side transport 

e.g.   

Buffer inParams , outParams ; 

params  << 1; 

stub->invoke(ADD, inParams , outParams );  

3. The stub side transport, if needed, marshals the data to transport 
specific format makes a remote call to the transport server at the 
other end. 

e.g.   

remote->invoke( ADD,inParams,outParams,exception ); 

 

Detailed design 



© 2012 IBM Corporation 24 

Shared Variable server 

Shared Variable 
Server 

Server side transport Server side data type 

1. Server side transport 
receives a call from the 
client side transport. 

2. The server side transport, if needed, unmarshals the data 
to Buffer  and calls invoke on the data server. 

e.g.   

server->invoke( ADD,inParams,outParams ); 

 

3. The server side data type deserializes the parameters 
and performs the appropriate operation on the contained 
data element 

e.g. 

inParams  >> temp; 

outParams  << this->add(temp); 

Detailed design 



© 2012 IBM Corporation 25 

Shared Variable stub and server example 

 

 

SVIntegerClient<int32, SVBasicInterfaceCorbaClientImpl> 

 SVBasicInterfaceCorbaServerImpl<SVIntegerServer<int32>> 

Shared Variable 
Client 

Transport 

Shared Variable 
Server 

Detailed design 



© 2012 IBM Corporation 26 

Shared variable description language (SVDL) 

! !Describes the composition of a shared variable 

! !Various constructs 
–!Base variable 

•! refers to a shared variable server, needs dll and location 
–!Variable group 

•! a protocol governed group of base variable, shared variable and / or variable group 
–!Shared variable 

•! contains a base variable or a variable group and has a name 

! !Is part of the Application Definition Language and is loaded by the Shared variable 
daemon at deployment time 

Detailed design 



© 2012 IBM Corporation 27 

SVDL example 

<sharedVariable > 

    <name>A</name> 

    < variableGroup > 

        <protocol>Atomic</protocol> 

        < baseVariable > 

            < dll >/users/omega/ abc.so </ dll > 

            <location>192.168.2.101</location> 

        </ baseVariable > 

        < baseVariable > 

            < dll >/users/omega/ abc.so </ dll > 

            <location>192.168.2.102</location> 

        </ baseVariable > 

    </ variableGroup > 

</ sharedVariable > 

Detailed design 



© 2012 IBM Corporation 

Implementation & Evaluation 

! !Besides the implementation of data types, we have a transport implementation 
based on CORBA.  

! !We have implemented 4 protocols – Atomic Master-Slave, Atomic Master-Slave 
with Buffer, Causal and Partitioned protocol. Other implementations will follow. 

! !The reported experiments were conducted on a 2 x dual core machines @ 3.0 
GHz with 8 GB RAM 

28 



© 2012 IBM Corporation 

Comparison between performance of AMS and AMSB 

29 



© 2012 IBM Corporation 

Comparison between performance of AMSB and Causal protocol 

30 



© 2012 IBM Corporation 

Summary & Future Work 

! !Shared variables in System S attempt to exploit configuration parameters to code 
generate a customized implementation for higher performance 

! !Maintaining conformity to SPADE’s native data types makes it simple to program 
using Shared Variables 

! ! Initial scalability and performance results seem to be very promising 

! !Work is ongoing to determine the best heuristic that translates configuration 
parameters (e.g. readsPerSecond, writesPerSecond, consistency, etc.) to the 
most appropriate generated code for shared variables 

! !Work is ongoing to incorporate the dependency between various clients 
(operators) into the Shared Variable consistency model 

31 



© 2012 IBM Corporation 32 

Thank You! 


