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ABSTRACT
Complex event processing uses patterns to detect composite
events in streams of simple events. Typically, the events are
logically partitioned by some key. For instance, the key can
be the stock symbol in stock quotes, the author in tweets,
the vehicle in transportation, or the patient in health-care.
Composite event patterns often become meaningful only af-
ter partitioning. For instance, a pattern over stock quotes is
typically meaningful over quotes for the same stock sym-
bol. This paper proposes a pattern syntax and transla-
tion scheme organized around the notion of partitions. Be-
sides making patterns meaningful, partitioning also benefits
performance, since different keys can be processed in par-
allel. We have implemented partitioned parallel complex
event processing as an extension to IBM’s System S high-
performance streaming platform. Our experiments with sev-
eral benchmarks from finance and social media demonstrate
processing speeds of up to 830,000 events per second, and
substantial speedups for expensive patterns parallelized on
multi-core machines as well as multi-machine clusters. Par-
titioning the event stream before detecting composite events
makes event processing both more intuitive and parallel.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Data ma-
nipulation languages; H.2.4 [Database Management]: Sys-
tems—Query processing

Keywords
CEP, composite events, stream processing, SPL, pattern
matching, regular expressions, automata, parallelism

1. INTRODUCTION
The world is becoming more connected, and increasing

amounts of continuous data streams are available from do-
mains as diverse as finance, social media, transportation,
telecommunications, entertainment, security, and health-care.
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(a) Example price curve with match, from [9].

1 stream<MatchT> Matches = MatchRegex(Quotes) {
2 param
3 pattern : ". rise+ drop+ rise+ drop* deep";
4 partitionBy : symbol;
5 predicates : {
6 rise = price>First(price) && price>=Last(price),
7 drop = price>=First(price) && price<Last(price),
8 deep = price<First(price) && price<Last(price) };
9 output

10 Matches : symbol=symbol, seqNum=First(seqNum),
11 count=Count(), maxPrice=Max(price);
12 }

(b) SPL source code with MatchRegex operator.

Figure 1: M-shape (double-top) stock pattern,
based on Cayuga’s financial Subscription 1 [9].

This has given rise to technologies that process these data
streams online for rapid response. One such technology is
stream processing, which supports many kinds of continuous
analytics, such as aggregating, enriching, classifying, anno-
tating, filtering, joining, parsing, etc. of incoming events.
Another such technology is CEP (complex event process-
ing), which uses patterns over sequences of simple events
to detect and report composite events. The boundaries be-
tween stream processing and CEP are not always clear, and
the terms are sometimes used interchangeably. The thesis
of this paper is that CEP is a special case of stream pro-
cessing. As evidence for its thesis, this paper describes an
implementation of CEP as an operator in a general-purpose
stream processing system.

This paper introduces the MatchRegex operator, which
is an operator for SPL [14], the Streams Processing Lan-
guage for the System S distributed streaming platform [13].
Figure 1 shows an example of using MatchRegex for finan-
cial analysis. Like many other SPL operators, MatchRegex
presents a simple declarative interface to the user, and is in-
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ternally implemented via code generation. The declarative
interface consists of three parameters: pattern is a regular
expression over the event stream; partitionBy is a key for
partitioning the event stream; and predicates are boolean
expressions for use in the pattern. The partitioning opens
the door to parallelization on multi-core machines and even
multi-machine clusters.

The MatchRegex operator has several advantages over prior
CEP engines. It performs incremental aggregation: it main-
tains aggregations such as First, Count, and Max from Fig-
ure 1 incrementally, storing only the necessary information
and updating it one input event at a time. The alterna-
tive is keeping a data structure of all matching input events,
and computing the aggregation non-incrementally by iter-
ating over these events. The incremental approach is faster
and uses less memory. Another advantage is the integration
in a general streaming system. This makes it possible to
use the MatchRegex operator for tasks that it is good at,
while leaving other tasks, such as XML processing, natural-
language text analytics, etc. to other operators designed for
those purposes. The operator works with automatic paral-
lelization, which yields substantial speedups for slow pat-
terns, without burdening the user with having to parallelize
by hand. The operator supports powerful predicates, which
can even call user-defined functions from the middle of a
pattern-match. And finally, the operator uses standard reg-
ular expression syntax and semantics, making good use of a
skill set common among most programmers.

This paper makes the following primary contributions:

• A declarative syntax for partitioned CEP patterns that
integrates smoothly into the host language (Section 2).

• A translation into automata that maintain aggrega-
tions incrementally and exploit the partitioning for
parallelism (Section 3).

• A suite of static safety checks that catch programming
errors early and ensure deterministic execution (Sec-
tion 4).

Overall, this paper demonstrates not only that CEP can
be naturally implemented as an operator in a general-purpose
streaming system, but it also yields high sequential perfor-
mance and even higher parallel performance.

2. COMPOSITE EVENT SPECIFICATION
The design of the composite-event specification syntax has

three objectives: familiarity, expressiveness, and safety. The
syntax should be familiar to programmers, so they can pick
it up quickly based on what they already know. The syntax
should be expressive, so it can easily address common use
cases of complex event processing. And the syntax should
encourage safe, predictable, and deterministic code, while
enabling the compiler to detect and flag errors early. The
syntax in this paper resembles the MATCH_RECOGNIZE clause
proposed to ANSI as an SQL extension [25]. However, we
simplified the syntax to make it easier to use and optimize,
and we modified it to fit in a library operator without re-
quiring any host-language grammar changes.

2.1 Syntax Overview
As the example in Figure 1 shows, a composite event spec-

ification consists of a signature (Line 1), a pattern (Line 3),
a partition key (Line 4), predicates (Lines 5-8), and output

Syntax Description (explanation)
id Identifier (predicate)
. Wildcard (true predicate)

re1 re2 Concatenation (re1 followed by re2)
re1 | re2 Disjunction (re1 or re2)

re* Kleene star (zero or more repetitions)
re+ Kleene plus (one or more repetitions)
re? Optional (zero or one occurrences)
(re) Grouping (overrides operator precedence)

Empty (consumes no events)

Table 1: Regular expressions supported in patterns.

assignments (Lines 10 + 11). The following discussion dis-
sects each of these components.

Line 1 from Figure 1 shows the signature:

1 stream<MatchT> Matches = MatchRegex(Quotes) {

The signature specifies the type (MatchT) and name (Mat-
ches) of the output stream, the operator (MatchRegex), and
the input stream (Quotes). Conceptually, the MatchRegex

operator is a stream transformer that transforms an input
stream of simple events into an output stream of compos-
ite events. Since signatures for all (library or user-defined)
SPL operators follow the same syntax, the syntax is famil-
iar to SPL programmers [14]. SPL is a statically typed lan-
guage, and the type of the output stream improves safety.
SPL has an expressive type system, including various primi-
tive types for numbers, strings, enumerations, booleans, and
timestamps, as well as composite types such as lists, maps,
or tuples. (A tuple in SPL is a record of attributes, where
each attribute has a name and a type. In SPL terminol-
ogy, the unit of communication on a stream is a tuple, but
this paper refers to tuples on streams as events instead for
consistency with the event-processing literature.)

Line 3 from Figure 1 shows the pattern :

3 pattern : ". rise+ drop+ rise+ drop* deep";

The pattern is a regular expression over an alphabet of
predicates. Regular expressions are familiar to most com-
puter professionals, since most popular programming lan-
guages support regular expressions over strings, and most
schools teach regular expressions as part of the computer
science core curriculum. For ease of use, MatchRegex sup-
ports the usual regular expression features shown in Table 1.
In particular, it supports Kleene closure for high expressive-
ness.

Line 4 from Figure 1 shows the partition key :

4 partitionBy : symbol;

In this example, the key is the symbol attribute from the
input stream of simple events. In general, the key can consist
of multiple attributes, separated by commas.

Lines 5-8 from Figure 1 show the predicates:

5 predicates : {
6 rise = price>First(price) && price>=Last(price),
7 drop = price>=First(price) && price<Last(price),
8 deep = price<First(price) && price<Last(price) };

The SPL language supports similar expressions as most
C-like languages, shown in Table 2. This syntax is famil-
iar to most programmers. The main novelty here is the
use of aggregations (First and Last). Aggregations look
like function calls and are discussed in detail in Section 2.2.
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Syntax Description (explanation)
id Identifier (attribute of event)

id ( e1, . . . , en ) Call (intrinsic or SPL function)
e1 op e2 Infix operator (logic, arithmetic, or comparison)

op e Prefix operator (logic or arithmetic)
e1 [ e2 ] Subscript (list or map access)
( e ) Grouping (overrides operator precedence)
lit Literal (boolean, number, or string value)

Table 2: Some of the SPL expressions supported in
predicates and output assignments.

1 boolean tagsEq(rstring tweet1, rstring tweet2) {
2 list<rstring> xs = parseAndSortTags(tweet1);
3 list<rstring> ys = parseAndSortTags(tweet2);
4 return xs == ys;
5 }
6 stream<MatchT> Matches = MatchRegex(Tweets) {
7 param
8 pattern : ". sameTags+ sameTags5th";
9 partitionBy : author;

10 predicates : {
11 sameTags = tagsEq(content, First(content)),
12 sameTags5th = Count() == 5 &&
13 tagsEq(content, First(content)) };
14 output
15 Matches : count=Count(), all=Collect(content);
16 }

Figure 2: Social-media analysis pattern.

Besides aggregations, predicates can also call normal SPL
functions. Figure 2 shows an example with an SPL func-
tion tagsEq (Lines 1-5) called from predicates in a pattern
(Lines 11+13). The only restriction is that for the operator
to be safely parallelized, predicates must be deterministic
and side-effect free, which the SPL compiler checks auto-
matically.

Lines 10+11 from Figure 1 show the output assignments:

10 Matches : symbol=symbol, seqNum=First(seqNum),
11 count=Count(), maxPrice=Max(price);

When a composite event has been detected, the output as-
signments set its attributes. Like the predicates, the output
assignments also use SPL expressions. Output assignments
use the same general syntax in all (library or user-defined)
SPL operators, thus improving familiarity. Again, for safety,
parallelization only happens if the compiler can show that
the output assignments are deterministic and side-effect free;
this is usually the case.

2.2 Aggregations
The running example from Figure 1 contains several ag-

gregations, such as First and Max. Table 3 lists the full set
of aggregations that the MatchRegex operator supports. The
function parameters v refer to an attribute of the input sim-
ple events. For instance, if ts is an attribute with a times-
tamp, then Delta(ts) returns the difference between the
current ts and ts at the start of the match. Most of the ag-
gregation functions are generic: they have a type parameter
T. For example, the argument v in <ordered T> T Max(T v)

can be an attribute of any ordered type (number, timestamp,
enum, or string), and the aggregation returns the same type.

Aggregations are operator-specific intrinsic functions. The
MatchRegex operator, like many SPL operators, is imple-
mented by code generation. In other words, the opera-

Prototype Description
int32 Count() Number of simple events
<any T> T First(T v) First in match
<any T> T Last(T v) Last in match
<ordered T> T Max(T v) Largest
<ordered T> T Min(T v) Smallest
<numeric T> T Sum(T v) Sum
<numeric T> T Average(T v) Arithmetic mean
float64 Delta(timestamp v) Time since match start
<any T> list<T> Collect(T v) All values as a list

Table 3: Operator-specific intrinsic functions sup-
ported in predicates and output assignments.

tor internally has a mini-compiler, which generates C++
code based on the operator parameters and other meta-
information such as types and output assignments. This
mini-compiler has special knowledge of intrinsic functions,
and treats them specially by generating custom code for
them. Specifically, aggregations in the MatchRegex operator
are translated into code for incrementally updating a partial
match each time it is extended by one more simple event.
This section focuses on the semantics of aggregations that
the user needs to know, deferring implementation details to
Section 3.

Consider the predicate fragment price >= Last(price).
A bare identifier, such as price, refers to an attribute of the
current simple event. An aggregator call, such as Last(price),
in a predicate refers to a value computed from the simple
events in the partial match so far. That means that this
predicate fragment checks whether the current simple event
contains a higher price than that of the last (i.e., previous)
simple event.

Consider the output assignment maxPrice = Max(price).
The left-hand-side identifier, maxPrice, refers to an attribute
of the matched output composite event. An aggregator call,
such as Max(price), in an output assignment refers to a
value computed from all simple events in the completed
match.

Aggregations such as the ones that MatchRegex supports
are familiar to database programmers. For example, in SQL,
one might find the following:

SELECT Max(price) as maxPrice FROM Quotes WHERE . . .

The set of supported aggregators in Table 3 includes most
familiar cases. Furthermore, the Collect aggregator returns
a list of all values for a particular attribute in a match. That
maximizes expressiveness, since users can compute their own
aggregations from that list. For example, Line 15 in Figure 2
assigns all the contents of all matching tweets, which can
then be processed further by a down-stream operator.

The implementation of aggregation requires state, but
that is hidden from the user. It is handled internally by
the generated code so as not to interfere with safe paral-
lelization.

2.3 Semantics
The main thing the user needs to know about MatchRegex

patterns is that standard regular expression semantics ap-
ply. The pattern simply matches the input sequence of sim-
ple events in arrival order, one predicate at a time. Reusing
widely-understood semantics reduces surprises. For instance,
windows and time are not handled as a separate feature. In-
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stead, they are handled with the existing features via the
following idiom: define a predicate that refers to time (for
example, notTooLong = Delta(ts) < 0.5), then use that
predicate in the pattern (for example, notTooLong*).

That said, there are a few semantic choices worth mention-
ing: matching is non-greedy, partition-isolated, and partition-
contiguous, and completed matches are non-overlapping. The
rest of this section explains what that means and gives the
rationale behind each design decision.

Matching is non-greedy : for example, the pattern a+

matches right away after the first simple event that satisfies
predicate a. This property is also known as right-minimality.
It leads to good responsiveness in a real-time setting: if
matching were greedy, the operator would have to wait un-
til the next event that fails predicate a before it can report
the match for a+. Depending on the application, this de-
lay may be unacceptable. However, if a user desires greedy
matching, they can emulate it by an idiom that requires no
syntax change: add an explicit predicate at the end of the
pattern. For instance, largeSize priceRise+ priceDrop

stops only after the price is done rising.
Matching is partition-isolated if a partitionBy parame-

ter is specified. The semantics of partitioning are as if there
were a separate replica of the operator for each partition
(but the implementation uses maps instead to keep just a
reasonable number of parallel operators). This means that
there is no interference whatsoever between partial matches
from different partitions. This design choice is central to
this paper, as it ensures both simple intuitive semantics and
parallelizability.

Matching is (partition-)contiguous. Within a single par-
tition, every simple event is matched against an explicit
predicate from the regular expression, and no event is im-
plicitly skipped within a match. This choice keeps the se-
mantics simple. If non-contiguous matching is desired, it
can easily be emulated by the idiom of inserting an ex-
plicit predicate in the middle of the pattern. For exam-
ple, . notTooLong* largeIncrease uses notTooLong as a
skip predicate between the first and the last simple event.

Completed matches are non-overlapping in their parti-
tion. For example, consider the pattern a+ b and a sequence
of input events 〈x, a1, a2, b〉 satisfying predicates ¬a a a b.
There are two possible matches, a shorter one 〈a2, b〉 and a
longer one 〈a1, a2, b〉. The MatchRegex operator only reports
the longer one, and discards all other partial matches when
it does so. Reporting the longest match is known as left-
maximality [18], and discarding all other partial matches is
known as skip-past-last behavior [25]. In other words, the
operator always starts over from a clean slate after report-
ing a match. This is consistent with the behavior of regular
expressions over strings in most popular programming lan-
guages. For example, after detecting the token then in a
string, users probably have no interest in the overlapping
tokens hen or he. There are several potential causes for
overlapping matches, such as overlapping individual predi-
cates, and disjunction or closure in the regular expression.
Whatever the cause, MatchRegex reports only matches for
non-overlapping subsequences of each partition of the input
stream. Note that there may be overlaps across partitions,
to avoid interference.

There are not many use cases where the non-overlapping
semantics are a restriction, but at least one occurs in the
Cayuga benchmarks [9]. The use case aggregates over a
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Figure 3: MatchRegex operator code generation.

sliding window, which, by definition, is overlapping. In
SPL, sliding-window aggregations are more naturally ex-
pressed using other operators, hence there is no need for
the MatchRegex operator to support overlapping matches.

3. PARTITIONED PARALLEL AUTOMATA
The MatchRegex operator works by code generation, as

illustrated in Figure 3. The input to the code generator
consists of the parameters, output assignments, etc. from
an operator invocation such as the one for the M-shape pat-
tern in Figure 1. At compile-time, the code generator trans-
lates the pattern into an automaton, and generates C++
code for it. At runtime, the generated C++ code serves
as a stream transformer that consumes simple events and
produces composite events. The underlying code-generation
infrastructure is available to all SPL operator developers,
and used widely for library and user-defined operators alike.

The rest of this section takes a closer look at the imple-
mentation, starting from the automaton followed by parti-
tioning and finally auto-parallelization.

3.1 Translating Patterns to Automata
Using standard regular expressions as patterns, besides

making the most of users’ existing skill sets, has an addi-
tional advantage: it makes it possible to use standard text-
book algorithms for translating patterns to automata. The
MatchRegex operator uses Algorithm 3.36 from the “Dragon
book”(second edition) [4]. If the underlying alphabet is non-
overlapping, this algorithm converts a regular expression di-
rectly to a DFA (deterministic finite automaton). In the
MatchRegex operator, the alphabet consists of user-defined
predicates, which may be overlapping. For example, Fig-
ure 2 has overlapping predicates sameTags and sameTags5th.
Therefore, the algorithm yields an NFA (non-deterministic
finite automaton). However, unlike NFAs in general, the
NFA in our case has useful additional properties: it is free
of epsilon-transitions (in other words, the automaton makes
exactly one state transition per input event), and each pred-
icate appears on only one transition emanating from each
state (in other words, it needs to be evaluated only once per
event per partial match).
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Figure 4: Automaton for M-shape pattern
". rise+ drop+ rise+ drop* deep" from Figure 1.
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Figure 4 shows the automaton for the running example.
State 0 is the starting state. Each transition edge is labeled
with a predicate, which is a boolean expression over the
current input event and the partial match so far. To reach
a complete match, the automaton must arrive at State 6,
which is the accepting state. At this point, the MatchRegex

operator submits a composite event.

3.2 Partitioning the Automata

:PartitionMap 

0..* 

:SimpleEvent 
ts 

symbol 
price 
size 

seqNum 
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0 1 3 drop 
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deep 
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. 

:PartialMatch 
state 
aggr 

type PartitionMap = map<Key, list<PartialMatch>>
type Key = tuple<rstring symbol>
type PartialMatch = tuple<int32 state, Aggr aggr>
type Aggr = tuple<
int32 count,
tuple<uint32 first,uint32 last,uint32 max> price,
tuple<uint32 first> seqNum>

Figure 5: Data structures for partitioned matching.

In the presence of a partitionBy parameter, the Match-
Regex operator performs partitioned pattern matching. Fig-
ure 5 shows the relevant data structures. One or more at-
tributes of the input simple event are designated as a key
(in this case, the stock symbol). The key is used to retrieve
a list of partial matches from the partition-map. Each par-
tial match in the list consists of an NFA state and some
aggregation information aggr.

The aggregation information aggr incrementally main-
tains anything needed by the aggregators in predicates or
output assignments. For instance, maxPrice = Max(price)

is an output assignment that requires the maximum of at-
tribute price, maintained incrementally in aggr.price.max.
Each time a new input event has a higher price, the aggre-
gation is updated. Performing aggregation incrementally
one simple event at a time benefits both responsiveness and
memory consumption. It improves responsiveness, because
the computation is spread out evenly, instead of happen-
ing all at once when a match is completed. And it reduces
memory consumption, because the operator does not actu-
ally store any past simple events. Storing past simple events
is unnecessary, since the aggr field of the partial match sum-
marizes all the necessary information.

Figure 6 shows a simplified version of the code generated
from the running example M-shape pattern. Each incom-
ing simple event triggers a call to the process function
(Line 1), and each outgoing composite event is a call to
the submit function (Line 32). Lines 2-7 retrieve the list
of partial matches from the partition-map. Lines 9-11 cre-
ate new partial matches for transitions from the start state.
Lines 12-28 update old partial matches for transitions from
other states. And, if any partial matches have reached an
accepting state, Lines 29-34 submit the longest one and clear
the list of partial matches for this partition. As Section 5 will
demonstrate, this code performs well in practice: even with-
out parallelization, the M-shape pattern reaches through-
puts above 700,000 events per second.

1 void process(SimpleEvent& evt) {
2 Key key(evt.symbol);
3 PartialMatchList& oldPms =
4 partitionMap.has(key) ? *partitionMap.get(key)
5 : *new PartialMatchList();
6 PartialMatchList& newPms = *new PartialMatchList();
7 partitionMap.put(key, &newPms);
8 int longestAccepting = -1;
9 /*create new partial matches*/

10 if (/*predicate .*/)
11 newPms.add(new PartialMatch(1, evt));
12 /*update existing partial matches*/
13 for (int i=0, n=oldPms.size(); i<n; i++) {
14 PartialMatch& pm = *oldPms.get(i);
15 switch (pm.state) {
16 case 0: {
17 if (/*predicate .*/)
18 newPms.add(new PartialMatch(1, evt, pm));
19 break; }
20 /*similar cases for states 1-4*/
21 case 5: {
22 if (/*predicate drop*/)
23 newPms.add(new PartialMatch(5, evt, pm));
24 if (/*predicate deep*/) {
25 newPms.add(new PartialMatch(6, evt, pm));
26 /*update longestAccepting if longer*/ }
27 break; } } /*end of switch*/
28 delete &oldPms; } /*end of for*/
29 /*if any accepting match, submit longest and clear*/
30 if (longestAccepting != -1) {
31 PartialMatch& pm = *newPms.get(longestAccepting);
32 submitEvent(evt.symbol, pm.aggr.seqNum.first,
33 pm.aggr.count, pm.aggr.price.max);
34 newPms.clear(); }
35 }

Figure 6: Generated C++ code.

3.3 Parallelizing the Automata
Not all patterns are as inexpensive as the M-shape fi-

nance pattern from the running example. For instance, pat-
terns over Twitter messages may contain predicates that use
costly text manipulation. In applications where the pattern
is expensive, the MatchRegex operator can benefit from par-
allelization on multiple cores or machines [19].

Figure 7 illustrates the MatchRegex operator before (top)
and after (bottom) parallelization. The idea is to split the
stream of simple events into N channels; send each channel
to a separate replica of MatchRegex; and merge the N chan-
nels of composite events back into a single stream. The same
attribute(s) that serve as the key for the partition-map also
serve as the key for the hash-split. This guarantees that
if two simple events have the same key, they are sent to
the same replica, thus satisfying partition contiguity. Our
current implementation does not include any special provi-
sions for load balancing in the presence of skew [7] or fault-
tolerance [21], beyond what System S already provides out
of the box.

The MatchRegex operator may not be the only paralleliz-
able operator in the stream graph. For example, a Twitter
application may first parse XML strings with raw tweets
into tweet events, and then use a pattern to find compos-
ite events in the stream. Parallelizing both ParseTweet

and MatchRegex yields two back-to-back parallel segments.
Rather than merging all channels from the first segment only
to split them again right away, System S handles this with
a shuffle topology, as shown in Figure 8.
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Using partitions for parallelization has several advantages.
In our implementation, the parallelization is fully automatic:
it takes place in the compiler and runtime system, and re-
quires no user interaction [19]. Since the semantics guaran-
tee partition isolation, replicas of the MatchRegex operator
can maintain disjoint state, and no synchronization is re-
quired. In fact, the replicas do not even need shared mem-
ory, and can instead be distributed over different machines
in a cluster. The amount of available parallelism is generally
determined by the number of distinct keys. This number is
typically in the hundreds or thousands, and thus easily sup-
ports small to moderate degrees of parallelism even in the
presence of skew. Section 5 will show experiments with up
to 32 parallel channels. Finally, our implementation guaran-
tees deterministic semantics: given the same stream of sim-
ple events, MatchRegex always produces the same stream of
composite events, irrespective of whether and how much it
was parallelized. This determinism guarantee is the subject
of the next section.

4. SAFETY AND DETERMINISM
The MatchRegex operator and its implementation satisfy a

number of desirable semantic properties, including partition-
isolation, uniqueness of the longest match, behavior preser-

vation when parallelized, and liveness. This section explains
why each property holds.

Before discussing the advanced semantic properties, it is
worth mentioning that the SPL compiler and the MatchReg-
ex mini-compiler implement several conventional compile-
time checks. They check for syntax errors (such as an un-
known token in a regular expression), name errors (such as
an unknown identifier), and type errors (such as using a
string where a boolean is expected). The MatchRegex mini-
compiler also checks that transitions from the start state in
the automaton are not labeled with predicates involving ag-
gregation, because at the start state, there is no previous
partial match with aggregate information.

Partition-isolation: If the partitionBy parameter is
specified, there is no cross-partition interference. This prop-
erty was introduced in Section 2.3; here, we establish why
it holds. As described in Section 3.2, the operator implic-
itly keeps track of partial matches with their NFA-state and
aggregation information in a partition map. This data struc-
ture isolates implicit state of partitions from each other.
Hence, the only way to violate partition-isolation would be
for the user to maintain explicit state and share that across
partitions. This requires writing a variable during process-
ing for one partition, then reading the same variable during
processing for another partition. In SPL, variables can be
written either via an expression with side effects, such as
v++, or via a function. The SPL type system requires any
function with side effects on global state to be declared as
stateful, and any written function parameters to be de-
clared as mutable [14]. To guarantee partition-isolation, the
MatchRegex operator checks, at compile-time, that there are
no expressions with side effects, calls to stateful functions,
or calls with mutable parameters in the predicates or output
assignments.

Uniqueness of longest match: If multiple matches have
the same length, their aggregation information is the same.
As soon as any partial match reaches an accepting state, the
MatchRegex operator reports the longest accepting match.
The length of a match is the number of simple events it
spans. It is possible for multiple accepting matches to be
“longest”. However, in that case, the operator can report
any one of them, since they all have identical aggregation
information, and the resulting composite event is therefore
identical. This property holds for three reasons. The first
reason is (partition-)contiguity: within a partition, no sim-
ple events are skipped implicitly. The second reason is com-
plete aggregation: all events in the partial match contribute
to the aggregation information (see Section 2.3). In contrast,
aggregations in the MATCH_RECOGNIZE proposal [25] refer to
subsequences of events, increasing expressiveness but reduc-
ing simplicity and optimizability. The third reason is that
the NFA construction algorithm guarantees that each tran-
sition in the NFA is labeled with exactly one predicate, and
thus consumes one simple event (see Section 3.1).

Result-set preservation: The same input events yield
the same output events irrespective of parallelization. Thanks
to partition-isolation, an output event for a key k is affected
only by simple events for that same key k. As discussed
in Section 3.3, both the hash-split for parallelization and
the partition-map use the same key. Thanks to partition-
contiguity, that means that if a particular replica receives
at least one input event for key k, that replica receives all
input events for key k. It will therefore compute the same
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output events. Note that even the time aggregate Delta

is deterministic, since it relies on logical time in an event
attribute, not on physical machine time.

Result-order preservation: The order of events in the
output stream is the same irrespective of parallelization. If
the MatchRegex operator is parallelized, each replica com-
putes output matches for a subset of the keys. However,
since the replicas run in parallel, there is a potential race
condition: two output events computed by different replicas
might arrive at the merge out of order. The System S run-
time system resolves this issue via sequence numbers [19].
The split attaches a sequence number to each input event.
When the MatchRegex operator detects an output event, it
attaches the sequence number of the last simple event. And
finally, the merge orders output events by sequence numbers,
and strips the sequence numbers back off the data items be-
fore forwarding them to the downstream operator.

Liveness: Every output event gets reported within a boun-
ded amount of time. If the MatchRegex operator is not
parallelized, this property is guaranteed by eager matching,
as discussed in Section 2.3. If the operator is parallelized,
there is a potential problem: if the events for all keys in
one replica ri do not result in any output events, then the
merge must hold all output events from the other replicas,
in case an input event with a lower sequence number shows
up from replica ri. In theory, this could cause indefinite de-
lays or even deadlocks [16]. In practice, System S bounds
the delays by using pulses [19]. Every once in a while, the
split sends a pulse to all replicas. The pulse does not affect
pattern matching, but each replica of the MatchRegex op-
erator forwards the pulse. When the merge receives pulses
from all replicas, it submits all pending output events.

Taken together, these properties allow users to write pre-
dictable and deterministic applications. Parallelization only
affects performance, it does not change the output. Deter-
minism is often useful for testing, and in fact, we used it
in all the performance experiments for Section 5 to validate
that the functional behavior of the applications was correct.

5. RESULTS
This section uses several benchmark applications from

finance and social media to measure the performance of
the MatchRegex operator. These benchmarks also illustrate
what kind of applications can be easily expressed. Sec-
tion 5.1 describes the methodology, and Section 5.2 reports
the performance results.

5.1 Methodology
All experiments for this paper ran on machines with two

Intel Xeon processors, where each processor has four cores,
for a total of eight cores per machine. Each machine has
a clock-speed of 3 GHz and a main memory of 64 GB. For
all experiments, the input source and output sink ran on
different machines and communicated with the core bench-
mark via high-speed ethernet. Since the machines were not
reserved for our experiments, there was a certain amount of
noise from other system activity. To compensate for noise,
each data point is the arithmetic mean of ten runs.

Table 4 characterizes the input data sets. The finance
data set consists of 10,000 NASDAQ trades repeated 1,000
times with adjusted timestamps, totaling 10,000,000 sim-
ple events. The simple events have type Trade, with at-
tributes for the timestamp, stock symbol (e.g., "IBM"), price

Name Type Key # Keys # Events Logical time
finance Trade symbol 390 10,000,000 2 h 01 min
twitter Tweet author 6,142 200,000 36 h 40 min

type Trade = tuple<
timestamp ts, rstring symbol,
uint32 price, uint32 size, uint32 seqNum>;

type Tweet = tuple<
uint64 id, timestamp ts, rstring author,
rstring content>;

Table 4: Input data sets.

(in cents), size (in shares), and a sequence number. There
are 390 different traded symbols in the data set. The twit-
ter data set consists of 10,000 tweets repeated 20 times, to-
taling 200,000 simple events. The tweets are selected by
querying the 25 most common hash-tags, such as #business,
#writers, etc. The data set contains tweets from 6,142 dif-
ferent authors. Raw tweets come in as strings of XML con-
forming to the Atom syndication format. After parsing, the
simple events have type Tweet, with attributes for the ID,
timestamp, author, and message content. Using data sets
based on real stock trades or tweets, respectively, yields dis-
tributions and time series that are representative of what
might happen in practical deployments.

Table 5 characterizes the benchmarks. The first six bench-
marks use the finance data set, and the remaining three
benchmarks use the twitter data set.

Benchmark finance0 is based on the pattern used for per-
formance experiments by Agrawal et al. [3]. Benchmarks
finance1 thru finance5 are adapted from the Cayuga web-
page [9]. Specifically, they correspond to Subscription 1
thru 5, respectively, of their application scenario “techni-
cal analysis for stock investors”. Cayuga supports a feature
called resubscription, where the composite events detected
by a first pattern are fed as simple events into a second
pattern. This is used by finance3 and finance4. The first
pattern computes a sliding average, which requires overlap-
ping matches that MatchRegex does not support. Instead,
we replaced the first pattern by a more conventional aggre-
gation operator, taking advantage of the underlying general-
purpose streaming system. Our compiler was able to paral-
lelize both operators.

Each of the twitter benchmark starts with a ParseTweet

operator, which turns a raw tweet (XML string) into a Tweet

event (see Table 4). This operator is expensive but paral-
lelizable. To isolate the parsing overhead, twitter0 only does
parsing without pattern-matching, whereas twitter1 and twit-
ter2 do parsing plus matching a pattern each. Since both
parsing and matching are parallelizable, the topology con-
tains a shuffle, as shown in Figure 8.

The selectivity column in Table 5 measures the ratio of
output events to input events. For example, finance0 pro-
duces 0.0171 output events per input event. Since twitter0
does no filtering, it is not selective, and produces exactly
one output event per input event.

All benchmarks in this section use partitioning. All six
finance benchmarks are based on prior work, where they were
partitioned as well. The twitter benchmarks are not based
on prior work, but are naturally partitioned by authors.

5.2 Performance
This section presents results for absolute throughput, as

well as speedups on a single eight-core machine and on a
shared-nothing cluster of four eight-core machines.
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Name Pattern Description Selectivity Topology
finance0 largeSize priceRise+ priceDrop Large trade followed by peak 1.71 % MatchRegex only
finance1 . rise+ drop+ rise+ drop* deep M-shape (double top) 0.31 % MatchRegex only
finance2 . rise* riseEnd flat* flatEnd Rise then flat with time window 2.72 % MatchRegex only
finance3 divergence Price substantially above VWAP 0.03 % VWAP → MatchRegex

finance4 hi gap* lo Max of hi smaller than min of lo 5.15 % MinMax → MatchRegex

finance5 . notTooLong* largeIncrease Large increase with time window 0.04 % MatchRegex only
twitter0 (None) Parse tweet only, no matching 100.00 % ParseTweet only
twitter1 . sameTags+ sameTags5th Five tweets with identical tags 14.07 % ParseTweet → MatchRegex

twitter2 .+ disjointTags Different first vs. last tags 2.15 % ParseTweet → MatchRegex

Table 5: Benchmarks.

Benchmark 1 : Non-parallel Width : Best parallel
finance0 1 : 778,584 ± 8.5% 1 : 778,584 ± 8.5%
finance1 1 : 708,118 ±16.3% 1 : 708,118 ± 16.3%
finance2 1 : 832,469 ±15.4% 1 : 832,469 ± 15.4%
finance3 1 : 229,090 ± 5.7% 4 : 732,837 ± 15.0%
finance4 1 : 371,753 ± 9.6% 4 : 670,781 ± 18.5%
finance5 1 : 235,672 ± 4.2% 8 : 737,656 ± 7.1%
twitter0 1 : 6,488 ± 8.1% 32 : 87,158 ± 3.7%
twitter1 1 : 6,267 ± 6.8% 16 : 66,492 ± 22.3%
twitter2 1 : 316 ± 0.8% 32 : 2,378 ± 2.0%

Table 6: Absolute throughput in events/second.

Table 6 presents absolute throughputs to explore the ques-
tions: How fast is the MatchRegex operator? And what is
the best degree of parallelism? Each entry is of the form
width : throughput ± standardDeviation%. The width is the
number of parallel channels, in other words, the number of
replicas of parallelized operators; the throughput is the av-
erage number of input events per second over ten runs for
each data point; and the standard deviation is computed
over the same ten runs.

The highest throughput is 832,469 events per second for fi-
nance2. This is an extremely good number for CEP engines,
to our knowledge exceeded only by the Woods-Teubner-
Alonso CEP engine on FPGAs [23]. The MatchRegex opera-
tor achieves this good performance even without paralleliza-
tion thanks to its incremental aggregation, which obviates
the need to store and join old simple events. Overall, the
fastest non-parallel benchmarks are finance0, finance1, and
finance2, and parallelizing them yields no further speedup,
since matching is already so fast that it does not consti-
tute a bottleneck. Perhaps surprisingly, these three fastest
benchmarks have the most sophisticated regular-expression
patterns in our benchmark suite, indicating that extra states
in the automaton incur no extra cost. At the other end of
the spectrum, the three twitter benchmarks are slowest. For
twitter0 and twitter1, that can be blamed on parsing, not
pattern matching, as demonstrated by twitter0, which does
only parsing. As of the time of this writing, the twitter.com
website advertises 250 million tweets per day, which aver-
ages to 2,893 tweets per second, so the parallel throughput
of 66,492 tweets per second in twitter1 is more than fast
enough. The twitter2 benchmark is the slowest. Its regu-
lar expression starts with .+, which means that every event
initiates a new partial match. But since twitter2 has a se-
lectivity of 2.15%, only about 1 in 47 events end a partial
match, leading to a lot of in-progress matches for the op-
erator to handle. This is exacerbated by the fact that the
disjointTags predicate involves further parsing of the tweet

contents to extract hash-tags, and comparing sets of hash-
tags to determine disjointness. To get better twitter2 results,
users could precompute the tag sets using a separate opera-
tor and store them in an attribute.

Looking at the results after parallelization, all finance
benchmarks reach throughputs exceeding 600,000 events per
second. Depending on the benchmark, the best parallel
width ranges from 1, 4, or 8 to 16 or 32. This motivates
online elastic scaling as a fruitful area for future work, which
we are actively pursuing. Overall, Table 6 demonstrates that
aside from twitter2, which has both a slow pattern and slow
predicates, the MatchRegex operator achieves high through-
puts.
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Figure 9: Speedup from parallelizing on a single
multi-core machine with 8 cores.

Figure 9 presents speedups on an eight-core machine to
explore the question: How much does non-distributed par-
allelism help? The x-axis shows the width, i.e., the number
of operator replicas. The y-axis shows the speedup, i.e.,
the throughput at width X normalized to the throughput
at width 1 for the same benchmark. In this graph, the
benchmarks are ordered by their 8-way speedup to make the
mapping between the curves and the legend easy to read.
The biggest speedup factors are 6.5, 4.2, and 3.8 for the
three twitter benchmarks. Those are the three benchmarks
with the worst absolute performance when non-parallel. Al-
though with 8-way parallelism on an 8-way machine, a per-
fect speedup would be 8×, this did not happen in practice
due to resource contention on the memory hierarchy and
network bandwidth to the source and sink. Among the fi-
nance benchmarks, the biggest speedup factors were 2.9 for
finance5 on 8 cores and 2.1 for finance3 on 4 cores. Again,
those two finance benchmarks have the lowest throughput
when non-parallel. The finance2 benchmark experiences the
worst speedup factor of 0.9. This is not too bad, and is
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probably caused by a combination of parallelization over-
head, noise, and load imbalance. Overall, the multi-core re-
sults demonstrate healthy speedups for the benchmarks that
need it most, without unduly slowing down other bench-
marks that already perform well.
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Figure 10: Speedup from parallelizing on a cluster
of 4 machines with 8 cores each = total of 32 cores.

Figure 10 presents speedups on a shared-nothing cluster
of four eight-core machines to explore the question: How
much does distributed parallelism help? The x-axis shows
parallel width, the y-axis shows speedups, and benchmarks
are ordered by their 32-way speedup. The three twitter
benchmarks experience the biggest speedup factors of 14.3,
11.0, and 7.5, which is much faster than parallelizing them
on a single eight-core machine only. In the range of 1-8
channels, the results are better than in Figure 9, because
the same number of channels are distributed over more ma-
chines. But again, there is no perfect speedup, because mul-
tiple replicas compete for memory hierarchy and network
resources on each machine. The finance4 application experi-
ences the worst speedup of 0.6 at width 32, indicating that
the multi-machine cluster is more vulnerable to paralleliza-
tion overhead and noise than a single multi-core machine.
This motivates future work on load balancing. Overall, the
results show that distributed parallelism can yield substan-
tially higher speedups than shared-memory parallelism. The
MatchRegex operator is well-suited to distributed execution
thanks to its semantic choices. In particular, the partition-
isolation property means that no shared memory is required
for its data structures.

6. RELATED WORK
This section surveys related work on event and stream pro-

cessing, focusing in particular on language design, matching
techniques, partitioning, and parallelism.

Early CEP (complex event processing) systems were not
parallel. One of the earliest CEP systems was NiagaraCQ [10].
NiagaraCQ used XML-QL as its query language, which was
one of the precursors of XQuery. It implemented pattern
matching using a graph of algebraic operators. The Nia-
garaCQ paper made no mention of partitioning. SQL-TS
extended SQL with pattern-matching over row sequences [18],
and included syntax for partitioning. Another early sys-
tem was Amit [2]. Amit queries were themselves written
as XML documents, and implemented via back-tracking.
Amit performed partitioning based on equality conditions on
keys. SASE was a CEP language implemented via NFAb au-

tomata (non-deterministic finite automata with buffers) [24,
3]. Like Amit, SASE performed partitioning based on equal-
ity conditions on keys, but the language directly supported
partitioning by providing specialized syntax for it. The
MATCH_RECOGNIZE proposal extended SQL-TS with several
additional features, most importantly, full-fledged regular
expressions and aggregation [25]. Like its predecessor SQL-
TS, it supported partitioning. Finally, EventScript speci-
fied patterns as regular expressions interspersed with ac-
tion blocks [11]. EventScript patterns were implemented
as DFAs (deterministic finite automata), and EventScript
specified partitioning in a group clause. We observe that
most of these systems supported partitioning in one form or
another, but none of them were parallel.

Early general streaming languages did not directly sup-
port CEP patterns. CQL (the Continuous Query Language)
was a dialect of SQL for streaming, implemented via al-
gebraic operators [6]. The CQL paper was silent on the
topic of parallelism. Borealis is a streaming system where
users can graphically compose (mostly) relational stream-
ing operators [1]. Not only is Borealis parallel, it is also
distributed. SPL (the Streams Processing Language) [14],
formerly known as SPADE [13], is a language for describ-
ing graphs of stream operators. SPL comes with a code-
generation infrastructure for synthesizing general operators
in C++ [17]. The graph-of-operators paradigm enables SPL
to capture various different flavors of stream processing [22].
SPL runs on System S, which, like Borealis, is parallel and
distributed [5]. This paper introduces a parallelizable CEP
operator for SPL.

A few recent CEP systems started exploring parallelism.
Brenna et al. published a study where they distributed Ca-
yuga via a “set of scripts to create configuration files that
contain the mapping between Cayuga stream identifiers on
the query level to multicast groups” [8]. Their baseline sys-
tem, Cayuga, is an algebraic CEP system with partitions
based on equality conditions on keys [12]. While their sys-
tem requires separate configuration files for parallelization,
our system fully automates parallelization. The NEXT sys-
tem also takes an algebraic approach to CEP, and scales by
automatically placing different operators of the same pattern
on different hosts [20]. However, unlike our work, Next
does not parallelize based on partitions, and computes no
aggregate information for detected events. EventJava sup-
ports CEP as patterns guarding event methods [15]. It
detects equality conditions on keys as partitions and uses
them to build sophisticated index data structures. Like
EventJava, our system can also deploy different event han-
dlers on different machines, but in addition, our system also
parallelizes individual patterns, which EventJava does not
do. Woods, Teubner, and Alonso showed how to implement
CEP on FPGAs [23]. They use regular expressions for pat-
terns, make partitions explicit, and implement patterns via
NFAs. Their matching engine exploits fine-grained paral-
lelism on the FPGA to evaluate many predicates simulta-
neously and perform many state machine transitions simul-
taneously. However, unlike our work, they lack partition-
parallelism, and they only perform pattern detection, with-
out computing aggregate information for detected events.

7. CONCLUSIONS
This paper describes a CEP operator in a general-purpose

streaming system. The user specifies patterns as regular ex-
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pressions with predicates and aggregations. The operator is
implemented by a code-generator, which translates the pat-
tern into an automaton, and implements the aggregations
incrementally, saving both time and space. Acknowledging
that most CEP matching is naturally partitioned, the user
can declaratively specify a partitioning key, and the opera-
tor exploits that key for parallelization. This paper demon-
strates that the resulting generated code is fast, reaching
throughputs up to 830,000 events per second for cheap pat-
terns, and yielding up to 14× parallel speedups for expensive
patterns.

By bringing together complex event processing with gen-
eral stream processing, this paper opens the door to more
expressive continuous analytics. The MatchRegex operator,
taken by itself, is simpler than a full-fledged CEP engine.
But the surrounding streaming system supplements it in
two ways: by letting it interact with other operators, and
by letting it exploit common runtime services. Other oper-
ators can perform additional functionality both before pat-
tern matching (e.g., parsing, classifying, aggregating) and
after pattern matching (e.g., joining, reporting, or even ad-
ditional instances of the MatchRegex operator). The runtime
system can provide common optimizations (such as fusion
and parallelization) and other services (such as visualization
and management). Keeping the operator simple reduces the
implementation burden, and leads to leaner semantics, mak-
ing CEP easier to use.
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