
Partition and Compose:
Parallel Complex Event Processing

Martin Hirzel, IBM Research
Tuesday, 17 July 2012

DEBS

1

CEP = Stream Processing?

2

Event (Stream) Processing

Complex Event Processing

?

 CEP as an operator in a streaming language?

Aggregate

Enrich
Filter

Join

Parse

Use pattern over “simple events”
to detect and report
“composite events”

…

Background: SPL

•  IBM Streams Processing Language
•  SPL is the language for

InfoSphere Streams
(IBM Product)

•  This paper is based on System S
= research branch of InfoSphere Streams

3	

Scenario: Financial analysis

4

M-shape (double-top) stock pattern
Source: http://www.cs.cornell.edu/bigreddata/cayuga/

Series of
rising peaks
and troughs

Deep drop
below start
of match

M-Shape pattern in SPL

5

Composite events Simple events Regular
expression

Aggregation

Key

 Operator only, no extensions to SPL syntax

Regular expressions

6

 Pattern language familiar from string matching

Aggregations

7

 Operator-specific intrinsic functions

Matching semantics

•  Standard regular expression semantics
•  Non-greedy (right-minimal)
•  Partition-isolated
•  (Partition-)Contiguous
•  Non-overlapping

(submit longest: left-maximal)

8

9

Implementation overview

 All C++ operators in SPL are code generators

MatchRegex
operator
instance

Upstream
operator
instance

Composite
events

Simple

events

At compile-time
At runtime

param,
output

Automaton

MatchRegex
operator

invocation

MatchRegex
operator
generator

Downstream
operator
instance

4
rise

2
5

0 1 3
drop

drop

deep
.

rise

deep

rise rise

drop

drop

6

10

. rise+ drop+ rise+ drop* deep

Automaton

 NFA (non-deterministic finite automaton)

Create new
partial match

Report completed
match and flush

Update and filter
partial match

11

Partitioning
:PartitionMap

0..*

:SimpleEvent
ts

symbol
price
size

seqNum

key

4
rise

2
5

0 1 3 drop

drop

deep

rise
deep

rise
rise

drop

drop

6

.

:PartialMatch
state
aggr

Generated
C++ code

12

 Incremental
aggregation

4
rise

2
5

0 1 3 drop

drop

deep

rise
deep

rise
rise

drop

drop

6

.

13	

Paralleli-
zation

…
key

:SimpleEvent

symbol

…

MatchRegex
operator

PartitionMap

Up-stream
operator

Down-stream
operator

Simple
events

Composite
events

Parallelize

MatchRegex
(replica 2)

PartitionMap

…
key for partition map

:SimpleEvent

symbol

…

MatchRegex
(replica 1)

PartitionMap

MatchRegex
(replica 0)

PartitionMap

Up-stream
operator

Down-stream
operator

Simple
events

Composite
events

key for
hash-split

 Schneider et al.
[PACT’12]

Safety and determinism
•  SPL compiler checks …

–  Syntax and names in expressions
–  Expression and function types

•  MatchRegex operator checks …
–  Syntax and names in regular expression pattern
–  Starting predicate aggregation-free

•  Auto-parallelizer checks …
–  Partitioning
–  Absence of stateful expressions
–  Sequence numbers and pulses

14

 Enables simple output validation with “diff”

Data sets …

15

… and benchmarks

Absolute throughput
in events per second

16

 Large speedup when low sequential throughput

Speedups

17	

1 Machine x 8 Cores 4 Machines x 8 Cores = 32

 Motivates elasticity and auto-width controller

Related work
Engine / language Complex events Parallelism

NiagaraCQ / XML-QL Algebraic No
SQL-TS Back-tracking No

Amit Back-tracking No
NFAb / SASE Automaton No

MATCH_RECOGNIZE ANSI proposal No
EventScript Automaton No

Cayuga / CEL Automaton Yes, by hand
EventJava Index data structures Yes, per task

[Woods,Teubner VLDB] Automaton Yes, on FPGA
This paper Automaton Yes, partitioned

18

2000

today

Conclusions

•  CEP as an SPL operator
– Use CEP for pattern matching
– Use other operators for filtering, enrichment,

parsing, joining, etc.
•  Up to 830K events/second

–  Incremental aggregation
– C++ code generation
– Parallelism (up to 14x speedup)

19

Backup

20

21	

Shuffle in twitter02 and twitter03

ParseTweet
(replica 2)

ParseTweet
(replica 1)

ParseTweet
(replica 0)

Source Down-stream
operator

Raw tweets as
XML documents

MatchRegex
(replica 2)

MatchRegex
(replica 1)

MatchRegex
(replica 0)

Tweets as
simple events

Composite
events

