
Partition and Compose:
Parallel Complex Event Processing

(Ten Years Later)

Martin Hirzel, IBM Research

Thursday, 30 June 2022

DEBS

1



DEBS 2012 Paper

2

Partition
(Parallelism)

and

Compose
(Patterns)



Feeding 2 Birds from 1 Feeder

3

Speed

Ease of
Coding

Partition
(Parallelism)

and

Compose
(Patterns)



Stream Processing Optimizations

4

B 1

Batching

Unchanged graph
Stable semantics

P 3

Placement

Unchanged graph
Stable semantics

As 9

Algorithm
selection
Unchanged graph
Unstable semantics

Ls 10

Load
shedding
Unchanged graph
Unstable semantics

Fi 11

Fission 

Changed graph
Unstable semantics

Fu 2

Fusion

Changed graph
Stable semantics

Lb 8

Load
balancing
Unchanged graph
Stable semantics

Os 5

Operator
separation
Changed graph
Stable semantics

Or 6

Operator
reordering
Changed graph
Stable semantics

Re 7

Redundancy
elimination
Changed graph
Stable semantics

Ss 4

State
sharing
Unchanged graph
Stable semantics

 DEBS 2013 Tutorial and CSUR 2014 article



Fission for Parallelism

5

B 1

Batching

Unchanged graph
Stable semantics

P 3

Placement

Unchanged graph
Stable semantics

As 9

Algorithm
selection
Unchanged graph
Unstable semantics

Ls 10

Load
shedding
Unchanged graph
Unstable semantics

Fi 11

Fission 

Changed graph
Unstable semantics

Fu 2

Fusion

Changed graph
Stable semantics

Lb 8

Load
balancing
Unchanged graph
Stable semantics

Os 5

Operator
separation
Changed graph
Stable semantics

Or 6

Operator
reordering
Changed graph
Stable semantics

Re 7

Redundancy
elimination
Changed graph
Stable semantics

Ss 4

State
sharing
Unchanged graph
Stable semantics

 partitioning for stable semantics



Partition Parallelism

6

MatchRegex
operator

Up-stream
operator

Down-stream
operator

Simple
events

Composite
events

PartitionMap



Partition Parallelism

7

MatchRegex
operator

Up-stream
operator

Down-stream
operator

Simple
events

Composite
events

Fission

MatchRegex
(replica 2)

PartitionMap

MatchRegex
(replica 1)

PartitionMap

MatchRegex
(replica 0)

PartitionMap

Up-stream
operator

Down-stream
operator

Simple
events

Composite
events

hash-split

PartitionMap



Scenario: Financial analysis

8

M-shape (double-top) stock pattern
Source: http://www.cs.cornell.edu/bigreddata/cayuga/

Series of
rising peaks
and troughs

Deep drop
below start
of match



Regular Expression

9

. rise+ drop+ rise+ drop* deep



M-Shape pattern in SPL

10

Composite events Simple events
Regular
expression

Aggregation

Key



4
rise

2
5

0 1 3
drop

drop

deep

.
rise

deep

rise rise

drop

drop

6

11

. rise+ drop+ rise+ drop* deep

Automaton

Create new
partial match

Report completed
match and flush

Update and filter
partial match



12

Data Structures

:PartitionMap

0..*

:SimpleEvent

ts

symbol

price

size

seqNum

key

4
rise

2
5

0 1 3
drop

drop

deep

rise

deep

rise

rise
drop

drop

6

.

:PartialMatch

state

aggr
:Aggr

count

price: first

last

max

seqNum: first



Speedups

13

1 Machine x 8 Cores 4 Machines x 8 Cores = 32



14

Shuffle in twitter02 and twitter03

ParseTweet
(replica 2)

ParseTweet
(replica 1)

ParseTweet
(replica 0)

Source
Down-stream

operator

Raw tweets as
XML documents

MatchRegex
(replica 2)

MatchRegex
(replica 1)

MatchRegex
(replica 0)

Tweets as
simple events

Composite
events



Productization

• In IBM Streams product since 2012

• Library operator (no core runtime change)

15



DEBS 2016 Paper

16

Speed

Ease of
Coding



More Ease of Coding

17

Speed

Ease of
Coding

Partition
(Parallelism)

and

Spreadsheet
(Formulas)



Streaming Spreadsheets

18

=SUM(C3:C10)

=B3*C3

=B10*C10

=SUM(G3:G10)

=A15 =C15 =G12/C12 =B15<G15

S
cr

o
lli

ng

S
cr

o
lli

ng



Time-Based Windows

19

Columns

Time

Variable-sized windows:
occupy one cell,

aggregate all elements

Rows



Partitioned Virtual Worksheets

20

Sheets

Time

Partitioned virtual worksheet:
visualize one key (“ACME”),

calculate all keys

Columns

Rows



Partition Parallelism, Again

21

Spreadsheet
operator

Up-stream
operator

Down-stream
operator

Fission

Spreadsheet
(replica 2)

PartitionMap

Spreadsheet
(replica 1)

PartitionMap

Spreadsheet
(replica 0)

PartitionMap

Up-stream
operator

Down-stream
operator

hash-split

PartitionMap



DEBS 2017 Paper

22

Speed

Ease of
Coding



More Speed with Algorithms

23

Speed

Ease of
Coding

(De-)amortize
(incremental)

and

Aggregates
(Monoids)



Algorithm Selection for
Incremental Aggregation

24

B 1

Batching

Unchanged graph
Stable semantics

P 3

Placement

Unchanged graph
Stable semantics

As 9

Algorithm
selection
Unchanged graph
Unstable semantics

Ls 10

Load
shedding
Unchanged graph
Unstable semantics

Fi 11

Fission 

Changed graph
Unstable semantics

Fu 2

Fusion

Changed graph
Stable semantics

Lb 8

Load
balancing
Unchanged graph
Stable semantics

Os 5

Operator
separation
Changed graph
Stable semantics

Or 6

Operator
reordering
Changed graph
Stable semantics

Re 7

Redundancy
elimination
Changed graph
Stable semantics

Ss 4

State
sharing
Unchanged graph
Stable semantics

 exact (not approximate) for stable semantics



Constant-Time Aggregation

25

aggvalF
c cd..g
d defg
e efg

g
fgf
g h h

i hi
j hij
k hijk
l hi..l

m hi..m
n hi..n

val agg E

B
(bottom of both stacks,

boundary between stacks)

Two-Stacks
time amortized O(1), space 2N



Emulate 2 Stacks with 1 Queue

26

c
cd..g

d
defg

e
efg

f
fg

g
g

h
h

i
hi

j
hij

k
hijk

l
hi..l

m
hi..m

n
hi..n

val
agg

aggvalF
c cd..g
d defg
e efg

g
fgf
g h h

i hi
j hij
k hijk
l hi..l

m hi..m
n hi..n

val agg E

B
(bottom of both stacks,

boundary between stacks)

Two-Stacks
time amortized O(1), space 2N

F B E



De-Amortize Flip Operation

27

c
cd..g

d
defg

e
efg

f
fg

g
g

h
h

i
hi

j
hij

k
hijk

l
hi..l

m
hi..m

n
hi..n

val
agg

F

c
cd..l

d
de..l

e
ef..l

L

f
fg

g
g

R

h
h

i
hi

A

j
jkl

k
kl

l
l

B

m
m

n
mn

E

val
agg

lL lR lA

lBlF

Two-Stacks
time amortized O(1), space 2N

DABA
time worst-case O(1), space 2N

F B E

 DEBS 2017 paper



Go Lite on Space

28

c
cd..g

d
defg

e
efg

f
fg

g
g

h
h

i
hi

j
hij

k
hijk

l
hi..l

m
hi..m

n
hi..n

val
agg

F

c
cd..l

d
de..l

e
ef..l

L

f
fg

g
g

R

h
h

i
hi

A

j
jkl

k
kl

l
l

B

m
m

n
mn

E

val
agg

lL lR lA

lBlF

F

cd..g defg efg fg g

B

h
hi..n

i j k l m n

E

queue
aggB

lBlF

Two-Stacks
time amortized O(1), space 2N

Two-Stacks Lite
time amortized O(1), space N+1

DABA
time worst-case O(1), space 2N

F B E



Both De-Amortized and Lite

29

c
cd..g

d
defg

e
efg

f
fg

g
g

h
h

i
hi

j
hij

k
hijk

l
hi..l

m
hi..m

n
hi..n

val
agg

F

c
cd..l

d
de..l

e
ef..l

L

f
fg

g
g

R

h
h

i
hi

A

j
jkl

k
kl

l
l

B

m
m

n
mn

E

val
agg

lL lR lA

lBlF

cd..l de..l ef..l fg g h
hi..l

i jkl kl l m
mn

n

F L R A B E

queue

aggRA aggB

lL lR lA

lBlF

F

cd..g defg efg fg g

B

h
hi..n

i j k l m n

E

queue
aggB

lBlF

Two-Stacks
time amortized O(1), space 2N

Two-Stacks Lite
time amortized O(1), space N+1

DABA
time worst-case O(1), space 2N

DABA Lite
time worst-case O(1), space N+2

F B E

 VLDB Journal 2021 paper



Open-Source Repository

30

github.com/ibm/sliding-window-aggregators



To Learn More

• Tutorial: Stream Processing Optimizations.
Scott Schneider, Buğra Gedik, Martin Hirzel. DEBS 2013.

• A Catalog of Stream Processing Optimizations. Martin Hirzel, Robert 
Soulé, Scott Schneider, Buğra Gedik, Robert Grimm. CSUR 2014.

• Spreadsheets for Stream Processing with Unbounded Windows and 
Partitions. Martin Hirzel, Rodric Rabbah, Philippe Suter, Olivier 
Tardieu, Mandana Vaziri. DEBS 2016. 

• Low-Latency Sliding-Window Aggregation in Worst-Case Constant 
Time. Kanat Tangwongsan, Martin Hirzel, Scott Schneider. DEBS 
2017.

• In-Order Sliding-Window Aggregation in Worst-Case Constant Time. 
Kanat Tangwongsan, Martin Hirzel, Scott Schneider. VLDB Journal 
2021.

31



Thank You, Collaborators!

• Tutorial: Stream Processing Optimizations.
Scott Schneider, Buğra Gedik, Martin Hirzel. DEBS 2013.

• A Catalog of Stream Processing Optimizations. Martin Hirzel, Robert 
Soulé, Scott Schneider, Buğra Gedik, Robert Grimm. CSUR 2014.

• Spreadsheets for Stream Processing with Unbounded Windows and 
Partitions. Martin Hirzel, Rodric Rabbah, Philippe Suter, Olivier 
Tardieu, Mandana Vaziri. DEBS 2016. 

• Low-Latency Sliding-Window Aggregation in Worst-Case Constant 
Time. Kanat Tangwongsan, Martin Hirzel, Scott Schneider. DEBS 
2017.

• In-Order Sliding-Window Aggregation in Worst-Case Constant Time. 
Kanat Tangwongsan, Martin Hirzel, Scott Schneider. VLDB Journal 
2021.

32



Thank You, DEBS Community!

• Tutorial: Stream Processing Optimizations.
Scott Schneider, Buğra Gedik, Martin Hirzel. DEBS 2013.

• A Catalog of Stream Processing Optimizations. Martin Hirzel, Robert 
Soulé, Scott Schneider, Buğra Gedik, Robert Grimm. CSUR 2014.

• Spreadsheets for Stream Processing with Unbounded Windows and 
Partitions. Martin Hirzel, Rodric Rabbah, Philippe Suter, Olivier 
Tardieu, Mandana Vaziri. DEBS 2016. 

• Low-Latency Sliding-Window Aggregation in Worst-Case Constant 
Time. Kanat Tangwongsan, Martin Hirzel, Scott Schneider. DEBS 
2017.

• In-Order Sliding-Window Aggregation in Worst-Case Constant Time. 
Kanat Tangwongsan, Martin Hirzel, Scott Schneider. VLDB Journal 
2021.

33



Take-Home Messages

• Parallelism itself is a not a goal, but just 
one of several possible optimizations

• Partitioning is key to stable parallelism

• Aggregation is foundational to most event 
and stream programming models

34



35

Backup



Data sets …

36

… and benchmarks


