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Feeding 2 Birds from 1 Feeder
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Stream Processing Optimizations
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B 1

Batching

Unchanged graph
Stable semantics

P 3

Placement

Unchanged graph
Stable semantics

As 9

Algorithm
selection
Unchanged graph
Unstable semantics

Ls 10

Load
shedding
Unchanged graph
Unstable semantics

Fi 11

Fission 

Changed graph
Unstable semantics

Fu 2

Fusion

Changed graph
Stable semantics

Lb 8

Load
balancing
Unchanged graph
Stable semantics

Os 5

Operator
separation
Changed graph
Stable semantics

Or 6

Operator
reordering
Changed graph
Stable semantics

Re 7

Redundancy
elimination
Changed graph
Stable semantics

Ss 4

State
sharing
Unchanged graph
Stable semantics

 DEBS 2013 Tutorial and CSUR 2014 article



Fission for Parallelism
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B 1

Batching

Unchanged graph
Stable semantics

P 3

Placement
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As 9

Algorithm
selection
Unchanged graph
Unstable semantics

Ls 10

Load
shedding
Unchanged graph
Unstable semantics

Fi 11

Fission 

Changed graph
Unstable semantics

Fu 2

Fusion

Changed graph
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Lb 8

Load
balancing
Unchanged graph
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Os 5

Operator
separation
Changed graph
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Or 6

Operator
reordering
Changed graph
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Re 7

Redundancy
elimination
Changed graph
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Ss 4

State
sharing
Unchanged graph
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 partitioning for stable semantics



Partition Parallelism
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Partition Parallelism
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MatchRegex
operator

Up-stream
operator

Down-stream
operator

Simple
events

Composite
events

Fission

MatchRegex
(replica 2)

PartitionMap

MatchRegex
(replica 1)

PartitionMap

MatchRegex
(replica 0)

PartitionMap

Up-stream
operator

Down-stream
operator

Simple
events

Composite
events

hash-split

PartitionMap



Scenario: Financial analysis
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M-shape (double-top) stock pattern
Source: http://www.cs.cornell.edu/bigreddata/cayuga/

Series of
rising peaks
and troughs

Deep drop
below start
of match



Regular Expression
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. rise+ drop+ rise+ drop* deep



M-Shape pattern in SPL
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Composite events Simple events
Regular
expression

Aggregation

Key
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drop
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. rise+ drop+ rise+ drop* deep

Automaton

Create new
partial match

Report completed
match and flush

Update and filter
partial match
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Data Structures

:PartitionMap

0..*

:SimpleEvent

ts

symbol

price

size

seqNum

key

4
rise

2
5

0 1 3
drop

drop

deep

rise

deep

rise

rise
drop

drop
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.

:PartialMatch

state

aggr
:Aggr

count

price: first

last

max

seqNum: first



Speedups
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1 Machine x 8 Cores 4 Machines x 8 Cores = 32
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Shuffle in twitter02 and twitter03

ParseTweet
(replica 2)

ParseTweet
(replica 1)

ParseTweet
(replica 0)

Source
Down-stream

operator

Raw tweets as
XML documents

MatchRegex
(replica 2)

MatchRegex
(replica 1)

MatchRegex
(replica 0)

Tweets as
simple events

Composite
events



Productization

• In IBM Streams product since 2012

• Library operator (no core runtime change)
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DEBS 2016 Paper
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More Ease of Coding
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Streaming Spreadsheets
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=SUM(C3:C10)

=B3*C3

=B10*C10

=SUM(G3:G10)

=A15 =C15 =G12/C12 =B15<G15

S
cr

o
lli

ng

S
cr

o
lli

ng



Time-Based Windows
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Columns

Time

Variable-sized windows:
occupy one cell,

aggregate all elements

Rows



Partitioned Virtual Worksheets
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Sheets

Time

Partitioned virtual worksheet:
visualize one key (“ACME”),

calculate all keys

Columns

Rows



Partition Parallelism, Again
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Spreadsheet
operator

Up-stream
operator

Down-stream
operator

Fission

Spreadsheet
(replica 2)

PartitionMap

Spreadsheet
(replica 1)

PartitionMap

Spreadsheet
(replica 0)

PartitionMap

Up-stream
operator

Down-stream
operator

hash-split

PartitionMap



DEBS 2017 Paper
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More Speed with Algorithms
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and

Aggregates
(Monoids)



Algorithm Selection for
Incremental Aggregation
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B 1

Batching

Unchanged graph
Stable semantics

P 3

Placement

Unchanged graph
Stable semantics

As 9

Algorithm
selection
Unchanged graph
Unstable semantics

Ls 10

Load
shedding
Unchanged graph
Unstable semantics

Fi 11

Fission 

Changed graph
Unstable semantics

Fu 2

Fusion

Changed graph
Stable semantics

Lb 8

Load
balancing
Unchanged graph
Stable semantics

Os 5

Operator
separation
Changed graph
Stable semantics

Or 6

Operator
reordering
Changed graph
Stable semantics

Re 7

Redundancy
elimination
Changed graph
Stable semantics

Ss 4

State
sharing
Unchanged graph
Stable semantics

 exact (not approximate) for stable semantics



Constant-Time Aggregation
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Emulate 2 Stacks with 1 Queue
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De-Amortize Flip Operation
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 DEBS 2017 paper



Go Lite on Space
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Both De-Amortized and Lite
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 VLDB Journal 2021 paper



Open-Source Repository
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github.com/ibm/sliding-window-aggregators
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Take-Home Messages

• Parallelism itself is a not a goal, but just 
one of several possible optimizations

• Partitioning is key to stable parallelism

• Aggregation is foundational to most event 
and stream programming models
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Data sets …
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… and benchmarks


