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Abstract

Integrating data preparation with machine-learning (ML) pipelines has been a long-
standing challenge. Prior work tried to solve it by building new data processing
platforms such as MapReduce or Spark, and then implementing new libraries of
ML algorithms for those. But despite the availability of these platforms, many
ML practitioners continue to use scikit-learn instead, owing to its clean design
and rich set of algorithms. Therefore, this paper proposes a different approach:
instead of extending a data processing platform for ML, extend an ML library for
data processing. Specifically, this paper proposes RASL, an open-source library of
relational algebra (RA) operators for scikit-learn (SL). We illustrate RASL with a
detailed case study involving joins and aggregation across multi-table input data.
We hope our approach will lead to cleaner integration of data preparation with
machine learning in practice.

1 Introduction

Data science code often consists of two separate pieces: a data preparation pipeline in a framework
such as pandas [23] or Spark [3] and a machine-learning pipeline in a framework such as scikit-
learn [10]. For the first piece, data preparation frameworks are optimized for data filtering, mapping,
and data integration via joins and aggregates, all of which are essentially relational-algebra operators.
For the second piece, machine-learning frameworks contain large collections of transformers (e.g.,
imputation, normalization, or feature selection) and estimators (e.g., classifiers or regressors) that
can be tuned and trained to maximize predictive performance. Unfortunately, when a data scientist
maintains separate pipelines based on different frameworks, the ensuing context switches make them
less productive, the code becomes more prone to errors and overfitting, and they can face substantial
re-work when trying to scale their code or deploy it as a service. Separating the pipelines for data
preparation and machine learning is problematic for productivity, transparency, and robustness.

One prior solution to this problem is to build a combined platform for both pieces. For example,
Hive [32] and Mahout [2] offer relational data preparation and machine learning on top of MapRe-
duce [13]. Similarly, Spark SQL [3] and MLlib [25] do the same on top of Spark [34]. Unfortunately,
while they combine relational algebra and machine learning on the same platform, they still expose
separate programming models for them. Furthermore, since many machine-learning algorithms are
easier to implement stand-alone than on bulk-synchronous frameworks such as MapReduce or Spark,
Mahout and MLlib have relatively small collections of algorithms compared to scikit-learn. Hence, a
common practice is to use Spark for preprocessing large data, using aggregation to reduce its size,
followed by scikit-learn for machine learning in a separate pipeline. Another solution from prior
work is to tightly integrate relational algebra with linear algebra [17, 21, 28]. While this yields
elegant algebraic systems that are well-suited to rewrite-based optimizers, the linear-algebra part is
too low-level for most users. It is easier for a data scientist to pick an off-the-shelf algorithm from
scikit-learn than to build up that same algorithm at the level of linear algebra.

This paper explores a different solution: adding relational-algebra operators to scikit-learn [10].
Scikit-learn comes with well over a hundred transformers and estimators for machine learning.
Other machine-learning libraries provide scikit-learn compatible APIs, such as XGBoost [12], Snap
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Figure 1: IMDB dataset entity-relationship diagram.

ML [14], and AIF360 [7]. Between scikit-learn itself and compatible libraries, data scientists have
access to hundreds of high-level algorithms. This makes scikit-learn immensely popular: as of this
writing, its GitHub page indicates that it is used by 255k other projects. Importantly for our work,
most data scientists are familiar with scikit-learn’s well-designed pipeline API. Adding the well-
understood operators from relational algebra thus makes it possible to perform both data preparation
and machine learning in a single pipeline, using a single uniform programming model.

This paper describes RASL, the first design of relational-algebra operators with scikit-learn syntax and
semantics. It discusses programming-model questions and solutions for cleanly integrating relational
algebra with high-level machine learning algorithms. This paper offers a detailed usage example. We
have implemented our operators with back-ends on both pandas and Spark. Pipelines can thus run
on either of these frameworks without code changes. The implementation is available open-source
(https://github.com/ibm/lale) as part of the Lale library [5], which extends scikit-learn for automated
machine learning. Overall, this paper introduces a consistent end-to-end programming model for
integrating relational-algebra based preprocessing into scikit-learn pipelines for machine learning,
which we hope will make data scientists more productive and pipelines more robust.

2 Overview and Example

This section uses a detailed example to give an overview of our relational-algebra operators. The
example task is to predict movie ratings based on the IMDB dataset [19]. Figure 1 describes the
dataset, comprising seven tables. We will predict the movies.m_rank attribute, which rates movies
on a scale from 1 to 10. The difficulty is that not all relevant features are available in the movies
table, since the database is in normal form. For instance, a useful feature might be “Given a new
movie, what is the average rating of earlier movies by the same directors?” Since the movies table
contains no information about directors, computing this feature requires data integration with the
movies_directors table, in other words, denormalization. The following code accomplishes that:
1 join_dir = (
2 (Scan(table=it.movies) & Scan(table=it.movies_directors))
3 >> Join(pred=[it.movies.m_id == it.movies_directors.md_movie_id],
4 join_type="left", name="j_dir"))

Line 2 uses two instances of the Scan operator to select the movies and movies_directors table,
respectively. The & combinator arranges these two operators side-by-side and independently. The >>
combinator on Line 3 pipes both their output to a Join operator. The join predicate pred finds rows
with matching movie IDs. We use a left join, to ensure each row from the movies table is represented
in the output, even if there are no corresponding rows in the movies_directors table. And we set
a name for the resulting output table so we can refer to it later. A data scientist can run this code
interactively in a notebook and can print the resulting dataframe for exploratory data analysis:
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5 join_dir.transform(imdb_train).toPandas()

As expected, columns m_id and md_movie_id match. Of course, this table does not yet have the desired
information, which is ratings of earlier movies by the same directors. This requires another join:
each row of the table is a movie, and we want to join each row with other rows whose director ID
matches. We could do this with a self-join, but this would not work as expected with train-test splits.
Specifically, the set of movies being tested may be small and disjoint from the movies for training,
from which the join should discover earlier movies by the same director. Therefore, we assume two
versions of the movies table: movies (the set of current movies under test) vs. other_movies (the set of
other movies to join against). We first join other_movies with directors, renaming its columns with
Map to avoid conflicts:

6 join_other_dir = (
7 (Scan(table=it.other_movies) & Scan(table=it.movies_directors))
8 >> Join(pred=[it.other_movies.m_id == it.movies_directors.md_movie_id],
9 join_type="left", name="j_o_dir")

10 >> Map(columns={"o_md_director_id": it.md_director_id,
11 "o_m_year": it.m_year, "o_m_rank": it.m_rank},
12 remainder="drop"))

Now, we are ready to join movies with earlier movies by the same director, using a Join by director
ID followed by a Filter to ensure that the other movie is indeed earlier. This filter prevents label
leakage and is common sense, since we cannot use information from the future to predict the present.

13 self_join_dir = (
14 Join(pred=[it.j_dir.md_director_id == it.j_o_dir.o_md_director_id],
15 join_type="left", name="sj_dir")
16 >> Filter(pred=[it.m_year > it.o_m_year]))

As before, while developing the pipeline, the data scientist can inspect the intermediate dataframe.

As expected, this dataframe is much larger than the original, since it has potentially multiple rows for
each current m_id. For example, in the screenshot, the 2003 movie “Omerip” was joined against at
least two earlier movies from 1977 and 1978 by the same director. Each row also has the rank of
the other movie, o_m_rank. The next step is to compute the average and maximum rank of each other
movie per current movie. This is a straight-forward GroupBy and Aggregate:

17 features_dir = (
18 GroupBy(by=[it.m_id])
19 >> Aggregate(columns={"dir_max_rank": max(it.o_m_rank), "dir_mean_rank": mean(it.o_m_rank),
20 "m_rank": first(it.m_rank)}))

The above code also holds on to the rank of the current movie, which will serve as the ground-truth
target label for which we want to train a predictive machine-learning model. Before getting to that,
the data scientist can inspect the intermediate data:
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Also, the data scientist can visualize the pipeline so far:

21 prefix_dir = (join_dir & join_other_dir) >> self_join_dir >> features_dir
22 prefix_dir.visualize()

As shown in the screenshot, hovering the mouse pointer over an operator in the visualization reveals
its configuration. Looking back at the description of the IMDB dataset in Figure 1, another useful
feature might be “Given a new movie, what is the average rating of earlier movies by the same
actors?” This feature can be calculated with a similar pipeline as before, this time joining movies
against roles. Here, we elide the code for that, and assume it defines a sub-pipeline prefix_act. In
practice, the data scientist may add more features, but for our example, we will leave it at that. When
we combine the features from both preprocessing sub-pipelines, we also include the movie IDs from
the original movie table in the join to ensure no movies are accidentally dropped:

23 movie_ids = Scan(table=it.movies) >> Map(columns={"row_m_id": it.m_id}, remainder="drop")
24 combine_features = (
25 (movie_ids & prefix_dir & prefix_act)
26 >> Join(pred=[it.movies.row_m_id==it.sj_act.m_id, it.movies.row_m_id==it.sj_dir.m_id],
27 join_type="left", name="combined"))

That completes the relational-algebra part of the example pipeline. We are now ready to add the
machine-learning part. First, since scikit-learn estimators can handle dataframes from pandas but not
Spark, we add a scikit-learn FunctionTransformer that converts them if necessary. Next, preprocessing
produces a single table with both features and the prediction target, but scikit-learn estimators require
those to be separated into X and y, respectively. Therefore, we add a simple higher-order operator
SplitXy that takes another operator or sub-pipeline as an argument, and splits its input appropriately
as the input to that operator. Next, ID columns are, at best, useless features and can, at worst, cause
over-fitting, so we drop them with a Project. Also, due to the left outer joins, the preprocessed data
contains null values, so we add a scikit-learn SimpleImputer. Finally, since the prediction target m_rank
is a continuous variable, we need a regressor. Specifically, we pick XGBRegressor from the popular
XGBoost library [12], which offers a scikit-learn compatible API. Putting this all together yields:

28 estimator = Project(drop_columns=["row_m_id", "m_id"]) >> SimpleImputer() >> XGBRegressor()
29 pipeline = (
30 combine_features
31 >> FunctionTransformer(func=lambda X: X if isinstance(X, pd.DataFrame) else X.toPandas())
32 >> SplitXy(operator=estimator, label_name="m_rank"))
33 pipeline.visualize()
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The visualization colors the machine-learning part of the pipeline light blue to indicate that it has
learnable coefficients that have yet to be trained. At this point, we have a single end-to-end pipeline,
which supports the standard scikit-learn fit and predict API:
34 trained_pipeline = pipeline.fit(imdb_train)
35 predictions = trained_pipeline.predict(imdb_test)

If the input consists of pandas dataframes, the relational-algebra operators in the pipeline use pandas
internally. On the other hand, if the input consists of Spark dataframes, they use Spark SQL internally.

3 Syntax and Semantics

This section discusses the user-facing design of our relational-algebra operators, leaving implementa-
tion details to the next section.

Scikit-learn adopts a different syntax from data preprocessing libraries such as pandas and Spark
SQL. Code that uses pandas or Spark SQL conflates operator configuration with execution, invoking
an operator directly on a dataframe (e.g., transformed_data = input_data.agg(**agg_hyperparams)).
In contrast, code for scikit-learn first configures the operator while being tacit about data (e.g.,
agg_op = Aggregate(**agg_hyperparams)). Separating configuration from execution lets scikit-learn
support not just one, but two different execution modes. Specifically, the two quintessen-
tial machine-learning execution modes are training and predicting, and a configured scikit-
learn transformer supports them with two methods, fit and transform. Since our relational-
algebra operators have no learnable coefficients, their fit is a no-op, so the relevant interface
is transformed_data = configured_op.transform(input_data). Scikit-learn carries this different syntax
to the pipeline level as well. In scikit-learn, the code op123 = make_pipeline(op1, op2, op3) only
mentions configured operators, not data, and the resulting pipeline op123 supports fit and transform.
This paper uses the >> combinator, so the above code becomes op123 = op1 >> op2 >> op3. Being tacit
about data during configuration allows using different data during executions with different modes.
For example, k-fold cross-validation calls fit with k− 1 folds and transform with the remaining fold.

For ease of use (and ease of implementation), we support a standard set of familiar text-book relational
algebra operators, shown in Table 1, and demonstrated by the example in Section 2. These operators
work on tables, which are data structures with rows and columns. Each column has a name and

Table 1: Relational algebra operators for scikit-learn.

Name Description Hyperparameters Transform
Name :Type Input →Output

Filter Drop non-matched rows pred : List[expr] Table → Table
Map Assign columns, columns : Dict[str, expr] Table → Table

one row at a time remainder : Enum["passthrough","drop"]
Join Combine columns of pred : List[expr] List[Table]→ Table

matching rows join_type : Enum["inner","left","right"]
name : str

GroupBy Create groups of rows by : List[expr] Table → Grouped
Aggregate Reduce group to row columns : Dict[str, expr] Grouped → Table
OrderBy Sort by columns by : List[expr] Table → Table
Scan Pick out a table table : expr List[Table]→ Table
Alias Rename table name : str Table → Table
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each row is a record with one value for every column. Our current design leaves the order of rows
unspecified and the types of columns dynamic. Besides tables, some operators also work on grouped
data, which is like a table, except that some columns are designated as a grouping key and sets of
rows with the same values for the grouping key form groups.

Most relational-algebra operators need to be configured with code to be executed per row, e.g., filter
conditions, mapping expressions, or join predicates (see column Hyperparameters of Table 1). There
are some scikit-learn operators whose hyperparameters accept functions, which may be anonymous
with Python’s lambda keyword. But that is verbose and hard to translate to non-Python backends, so
we designed a more restrictive expression language instead. While one option would have been to
represent that as a Python string, that would have been less familiar to Python users and would have
required its own parser [4]. Instead, we use Python’s operator overloading to build up expressions.

Since scikit-learn code is tacit about data, expressions need a placeholder to refer to the implicit input
data of the operator. We picked the neutral third person singular pronoun it for this. For example,
max(it.o_m_rank) overloads Python’s dot notation for attribute access to create a symbolic expression
that accesses the o_m_rank column of the current table. While most operators only have a single
input table, Join inherently has multiple. We support this with an extra level of attribute access. For
example, in it.movies.m_id == it.movies_directors.md_movie_id, the attribute movies refers to a table
and m_id refers to a column of that table. To make this work, operators Scan, Alias, and Join assign
table names, and operators Filter, Map, GroupBy, and Aggregate propagate table names from their input
to their output. These table names are piggy-backed on the data itself, so the operators do not need
to register them into some catalog as a side-effect. Sometimes, table or column names are not valid
Python identifiers, so we also overload it["attr"] as an alternative syntax for it.attr.

Python does not allow overloading logical connectives, so we used lists for and, and so far,
we do not yet provide syntax for or or not. The Join operator currently only supports equi-
joins, by checking that the predicate uses == comparisons between columns. For non-equi-joins,
users can write Join(..) >> Filter(..), keeping the Join operator simple. Similarly, separate
GroupBy(..) >> Aggregate(..). The Join operator requires column names that do not participate
in == comparisons to be unique, i.e., the output table does not have any duplicate columns with the
same name but different values from different input tables.

4 Implementation and Results

This section describes our implementation of the design from Section 3, using two back-ends:
pandas and Spark SQL. We plan to add additional back-ends in future work. The implemen-
tation represents tables as pd.DataFrame or pyspark.sql.DataFrame objects and grouped data as
pd.core.groupby.DataFrameGroupBy or pyspark.sql.GroupedData objects. In other words, it directly
uses the core data structures of the supported back-ends. The implementation represents operators

Table 2: Translating operators to back-ends (examples).

scikit-learn pandas Spark SQL

Filter(pred=[it.a > it.b]) it[it["a"] > it["b"]] it.filter(col("a") > col("b"))

Map(columns={
"a": day_of_month(it.a)})

pd.to_datetime(
it["a"]).dt.day()

it.withColumn(
"a", to_timestamp(it["a"])

).select(dayofmonth("a"))

Join(pred=[
it.t1.a1 == it.t2.a2])

pd.merge(t1, t2,
left_on="a1", right_on="a2")

t1.join(t2,
col("a1") == col("a2"))

GroupBy(by=[it.a]) it.groupby("a") it.groupby("a", sort=False)

Aggregate(columns={
"a": max(it.a)}) it.agg({"a": "max"}) it.agg({"a": "max"})

OrderBy(by=
[it.a, desc(it.b)])

it.sort_values(by=["a","b"],
ascending=[True, False])

it.orderBy(["a","b"],
ascending=[True, False])

Scan(table=it.a) next(filter(lambda d:
d.table_name == "a", it))

next(filter(lambda d:
get_alias(d) == "a", it))

Alias(name="a") set_attr(it, "table_name", "a") it.alias("a")
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as objects that conform to scikit-learn conventions, i.e., with methods __init__, fit, and transform.
The __init__ method validates and stores the hyperparameters; the fit method is a no-op; and the
transform method dispatches to the corresponding back-end based on the type of its input.

Table 2 gives examples for transform for simple cases; for other supported cases, see our open-source
code. The main difference between the back-ends is that pandas is eager and Spark SQL is lazy.
Operations on pandas dataframes eagerly return a new dataframe or grouped data that materializes
the effect of the operator right away. In contrast, operations on Spark SQL merely return a Spark
dataframe proxy object that contains a query, which is a promise for the effect of the operator. In
the case of a scikit-learn pipeline of relational operators, that laziness gets chained: the last operator
returns a dataframe with a promise for the effect of the entire pipeline. Consider the sub-pipeline
join_other_dir from Section 2. The Spark SQL dataframe resulting from its transform method
provides an explain method that prints the optimized query plan shown below:

join_other_dir.transform(train).explain("extended")

== Parsed Logical Plan ==
...
== Optimized Logical Plan ==
Project [md_director_id#4 AS o_md_director_id#6, m_year#2 AS o_m_year#7, m_rank#3 AS o_m_rank#8]
+- Join LeftOuter, (m_id#0 <=> md_movie_id#5)

:- Project [m_id#0, m_year#2, m_rank#3]
: +- Relation[m_id#0,m_name#1,m_year#2,m_rank#3] csv
+- Relation[md_director_id#4,md_movie_id#5] csv

In this example, while the original scikit-learn pipeline uses a Map operator for a projection after the
join only, the optimized query plan contains a Project operator before the join. This is because of a
query rewrite that hoists the projection to drop the unneeded m_name column early, to save space and
time during the join. Continuing with the example, at the end of Section 2, the result of the relational
sub-pipeline flows into a scikit-learn FunctionTransformer, configured to call X.toPandas(). That call
triggers Spark SQL to rewrite the entire relational part of the pipeline with its optimizer and then
execute the optimized query to materialize its result.

Our implementation currently supports functions for the Map operator (including several date-time
functions), the Aggreegate operator (including sum, max, mean, etc.); and the Filter operator (isnan,
isnotnan, etc.). The implementation factors framework-specific glue code in such a way that functions
can reuse it without much repetitive code, so adding a new function only takes a few lines of code
each. We are planning to add many more functions in future work.

One reason for choosing these two back-ends, which are both popluar for data preprocessing, was
their differing execution performance characteristics. Pandas is used when the dataset fits in memory,
while the distributed data processing capabilities of Spark are required for larger data sets. To
compare these implementations for the example in this paper, we created different sized datasets by
down-sampling and up-sampling the movies table. Figure 2 shows runtime in seconds for fit and
predict with pandas and Spark. These are average runtimes over 5 runs, and were executed on a
single-node machine with 16GB RAM and a 2.7 GHz processor. Spark was run in local mode using
4 cores. For 8 times the data, pandas ran out of memory, so only Spark execution times are reported.
Not surprisingly, pandas does better for smaller datasets while Spark scales better for larger datasets.
This demonstrates that our implementation provides a unified interface for these operators, while
maintaining the performance characteristics of the back-ends. Moreover, one can seamlessly switch
between back-ends based on the size of the datasets without any changes to the pipeline code.

5 Related Work

There have been several APIs for pipelines of machine-learning transformers and estimators over the
years, including WEKA [16], PMML [15], scikit-learn [10], and Spark MLlib [25]. At the time of this
writing, scikit-learn is the most popular, thanks to its clean design, large collection of operators, and
ecosystem of compatible libraries. Before this paper, scikit-learn lacked relational-algebra operators.

The detailed example in Section 2 is inspired by prior work on relational preprocessing for machine
learning, including by hand [27] and with automated pipeline discovery in Deep Feature Synthesis [20]
and One Button Machine [22]. None of these papers offered scikit-learn extensions with relational
algebra. In future work, we will explore targeting our operators with automated pipeline discovery.
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Figure 2: Runtime in seconds of pandas and Spark SQL for our IMDB example. The x-axis shows
the dataset sample size, a value greater than 1 indicates up-sampling with replacement.

Both back-ends in our implementation, pandas [23] and Spark ML [3], are based on dataframes, which
are essentially tables for data science. Dataframes originated in the R programming language [18],
and there have been several efforts to optimize their computational performance [3, 29, 30, 32].
Our implementation relies on existing approaches for computational performance, and innovates
beyond existing approaches by providing a scikit-learn interface to relational-algebra operators.
Both KeystoneML [31] and Helix [33] extend Spark with Scala-based pipeline APIs for joint data
preparation and machine learning. RASL instead uses scikit-learn for its large operator library and
Python for its popularity. In future work, we may apply some of their caching ideas to RASL.

One might think that the path to integrating machine learning with relational algebra should be
integrating linear algebra with relational algebra. Linear algebra underlies much of machine learning,
especially deep learning as pioneered by Theano [8] and later frameworks such as TensorFlow [1].
This inspired efforts towards implementing linear algebra on a platform that initially focused on
relational algebra, such as Mahout [2], SystemML [9], and SparkNet [26]. For even tighter integra-
tion, recent efforts propose joint linear-and-relational algebras, such as Weld [28], Lara [21], and
LaraDB [17]. While this is useful for computational performance, the success of scikit-learn indicates
that most data scientists prefer not to work directly with low-level linear algebra. Hence, in contrast
to this line of work, our paper integrates relational algebra with high-level scikit-learn pipelines.

LINQ integrates relational algebra directly with a general-purpose programming language [24].
This differs from our approach of integrating relational algebra with high-level machine-learning
pipelines. The sklearn2sql project translates scikit-learn estimators to SQL [11]. This differs from our
approach of adding relational-algebra operators to scikit-learn. TFX extends Tensorflow with data
transformations for feature wrangling [6]; in contrast, we extend scikit-learn with relational algebra.

6 Conclusion

This paper presents the first scikit-learn compatible API for relational-algebra operators. Our API
enables data scientists to include advanced multi-table relational feature preprocessing in their scikit-
learn pipelines, rather than performing this as a separate step. Having everything in a single pipeline
improves transparency; for instance, data scientists can visualize the entire pipeline, and it omits
nothing they need to know for training and scoring. While data cleaning and feature engineering
remain a demanding task for data scientists, our API puts them on a solid relational foundation
and integrates them cleanly with machine learning. We have implemented our design with two
interchangeable back-ends, one for pandas and one for Spark SQL. Initial experiments indicate that
the pandas back-end allows for interactive speed while iterating on small data, whereas the Spark SQL
back-end allows for better scaling. In future work, we will explore additional operators, additional
back-ends, and automation to further assist data scientists in creating well-performing pipelines.
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