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Abstract
Bias mitigators can reduce algorithmic bias in
machine learning models, but their effect on fair-
ness is often not stable across different data splits.
A popular approach to train more stable models
is ensemble learning. We built an open-source li-
brary enabling the modular composition of 10 mit-
igators, 4 ensembles, and their corresponding hy-
perparameters. We empirically explored the space
of combinations on 13 datasets and distilled the
results into a guidance diagram for practitioners.

1. Introduction
Algorithmic bias in machine learning can lead to models
that discriminate against underprivileged groups in various
domains, including hiring, healthcare, finance, criminal jus-
tice, education, and even child care. Of course, bias in
machine learning is a sociotechnical problem that cannot be
solved with technical solutions alone. That said, to make
tangible progress, this paper focuses on bias mitigators,
which improve or replace an existing machine learning esti-
mator (e.g., a classifier) so it makes less biased predictions
(e.g., class labels) as measured by a fairness metric (e.g.,
disparate impact [8]). Unfortunately, bias mitigation often
suffers from high volatility, meaning the estimator is less sta-
ble with respect to group fairness metrics. In the worst case,
this volatility can even cause a model to appear fair when
measured on training data while being unfair on production
data. Given that ensembles (e.g., bagging or boosting) can
improve stability for accuracy metrics [20], we felt it was
important to explore whether they also improve stability for
group fairness metrics.
Prior work either explores bias mitigation without any con-
sideration of ensembles, or entangles the two [3, 10, 13, 16,
17]. In contrast, our paper advocates that bias mitigators
and ensembles can be modular building blocks. Modularity
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provides a larger space of possible combinations to explore
and helps extend future advances in either ensembling or
bias mitigation to their combination. This paper explores
the question, “Can modular ensembles help with fairness,
and if yes, how?” We conducted a comprehensive empirical
study with 10 bias mitigators from AIF360 [2]; bagging,
boosting, voting, and stacking ensembles from the popular
scikit-learn library [4]; and 13 datasets of varying baseline
fairness (earlier papers use at most a handful). Our findings
confirm the intuition that ensembles often improve stabil-
ity of not just accuracy but also the group fairness metrics
we explored. However, the best configuration of mitigator
and ensemble depends on dataset characteristics, evaluation
metric of choice, and even worldview [9]. Therefore, we au-
tomatically distilled a method selection guidance diagram.
To support these experiments, we assembled a library of
pluggable ensembles, bias mitigators, and fairness datasets.
While we reused popular and well-established open-source
technologies, we made several new adaptations in our li-
brary to get components to work well together. Our li-
brary is available open-source (https://github.com/
IBM/lale) to encourage research and real-world adoption.

2. Library and Datasets
One of the contributions of our work is to implement com-
patibility between fairness mitigators and metrics from
AIF360 [2] and ensembles from scikit-learn [4] within a
single library, Lale [1], for exploring their combinations.

Metrics. This paper uses metrics from scikit-learn, includ-
ing precision, recall, and F1 score (harmonic mean of preci-
sion and recall). In addition, we implemented a scikit-learn
compatible API for several fairness metrics from AIF360
including disparate impact (ratio of positive outcomes for un-
privileged group to positive outcomes for privileged group,
as described in [8]).

Ensembles. Ensemble learning uses multiple weak mod-
els to form one strong model. We use four ensembles sup-
ported by scikit-learn and Lale in our experiments: bagging,
boosting, voting, and stacking. Following scikit-learn, we
use the following terminology to characterize ensembles: A
base estimator is an estimator that serves as a building block
for the ensemble. An ensemble supports one of two com-
position types: whether the ensemble consists of identical
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Figure 1. Combinations of ensembles and mitigators. PreMit(est) applies a pre-estimator mitigator before an estimator est; InMit denotes
an in-estimator mitigator, which is itself an estimator; and PostMit(est) applies a post-estimator mitigator after an estimator est. Bag(est, n)

is short for BaggingClassifier with n instances of base estimator est; Boost(est, n) is short for AdaBoostClassifier with n instances of base
estimator est; Vote(esti) applies a VotingClassifier to a list of base estimators esti; and Stack(esti, estn) applies a StackingClassifier to a list of
base estimators esti and a final estimator estn. For stacking, the passthrough option is represented by a dashed horizontal arrow.

base estimators (homogeneous, e.g. bagging and boosting)
or can consist of different ones (heterogeneous, e.g. vot-
ing and stacking). For the homogeneous ensembles, we
used their most common base estimator in practice: the
decision-tree classifier. For the heterogeneous ensembles
(voting and stacking), we used a set of typical base estima-
tors: XGBoost [6], random forest, k-nearest neighbors, and
support vector machines. Finally, for stacking, we also used
XGBoost as the final estimator.

Mitigators. We added support in Lale for bias mitiga-
tion from AIF360 [2]. AIF360 distinguishes three kinds
of mitigators for improving group fairness: pre-estimator
mitigators, which are learned input manipulations that re-
duce bias in the data sent to downstream estimators (we
used DisparateImpactRemover [8], LFR [21], and Reweigh-
ing [12]); in-estimator mitigators, which are specialized es-
timators that directly incorporate debiasing into their train-
ing (AdversarialDebiasing [22], GerryFairClassifier [15],
MetaFairClassifier [5], and PrejudiceRemover [14]); and
post-estimator mitigators, which reduce bias in predic-
tions made by an upstream estimator (we used Calibrat-
edEqOddsPostprocessing [18]).
Fig. 1 visualizes the combinations of ensemble types and
mitigator kinds we explored, while also highlighting the

modularity of our approach. Mitigation strategies can be
applied at the level of either the base estimator or the entire
ensemble, but by the fundamental nature of some ensembles
and mitigators, not all combinations are feasible. First, post-
estimator mitigators typically do not support predict proba

functionality required for some ensemble methods and rec-
ommended for others. Calibrating probabilities from post-
estimator mitigators has been shown to be tricky [18], so
despite Lale support for other post-estimator mitigators, Cal-
ibratedEqOddsPostprocessing is the only one explored in
our experiments. Additionally, it is impossible to apply an
in-estimator mitigator at the ensemble level, so we exclude
those combinations. Finally, we decided to omit some com-
binations that are technically feasible but less interesting.
For example, while our library supports mitigation at mul-
tiple points, say, at both the ensemble and estimator level
of bagging, we elided these configuration from Fig. 1 and
from our experiments.

Datasets. We gathered the datasets for our experiments
from OpenML [19]. Some have been used extensively as
benchmarks in other parts of the algorithmic fairness liter-
ature. We pulled other novel datasets from OpenML that
have demographic data that could be considered protected
attributes (such as race, age, or gender) and contained asso-
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Dataset Description Privileged group(s) Nrows Ncols DI

COMPAS Violent Correctional offender violent recidivism White women 3,377 10 0.822
Credit-g German bank data quantifying credit risk Men and older people 1,000 58 0.748
COMPAS Correctional offender recidivism White women 5,278 10 0.687
Ricci Fire department promotion exam results White men 118 6 0.498
TAE University teaching assistant evaluation Native English speakers 151 6 0.449
Titanic Survivorship of Titanic passengers Women and children 1,309 37 0.263

SpeedDating Speed dating experiment at business school Same race 8,378 70 0.853
Bank Portuguese bank subscription predictions Older people 45,211 51 0.840
MEPS 19 Utilization results from Panel 19 of MEPS White individuals 15,830 138 0.490
MEPS 20 Same as MEPS 19 except for Panel 20 White individuals 17,570 138 0.488
Nursery Slovenian nursery school application results “Pretentious parents” 12,960 25 0.461
MEPS 21 Same as MEPS 19 except for Panel 21 White individuals 15,675 138 0.451
Adult 1994 US Census salary data White men 48,842 100 0.277

Table 1. Qualitative and quantitative summary information of the datasets. The datasets are ordered by first partitioning by whether they
contain at least 8,000 rows (we picked 8,000 to get a roughly even split; the partition is represented by the horizontal line in the middle
of the table) and then sorting by descending baseline disparate impact (DI). Values for the number of rows (Nrows), number of columns
(Ncols), and baseline disparate impact displayed here are computed after preprocessing techniques are applied.

ciated baseline levels of disparate impact. In all, we used
13 datasets, summarized in Table 1. When running experi-
ments, we split the datasets using stratification by not just
the target labels but also the protected attributes [11], lead-
ing to moderately more homogeneous fairness results across
different splits. The exact details of the preprocessing are in
the open-source code for our library for reproducibility. We
hope that bundling these datasets and default preprocessing
with our package, in addition to AIF360 and scikit-learn
compatibility, will improve dataset quality going forward.

3. Empirical Study
We organize our experiments into two steps. The first is
a preliminary search that finds “best” mitigators without
ensembles. The second is the ensemble experiments using
the mitigator configurations selected by the first.

First step. It is difficult to define “best” (in an empiri-
cal sense) given different dimensions of performance and
datasets. To this end, we first run grid searches over each
dataset, exploring mitigators and their hyperparameters with
basic decision-trees where needed. We run 5 trials of 3-fold
cross validation for each configuration. For each dataset, we
choose a “best” pre-, in-, and post-estimator mitigator:

1. Filter configurations to ones with acceptable fairness,
defined as mean disparate impact between 0.8 and 1.25.

2. Filter remaining to ones with nontrivial precision.
3. Filter remaining to ones with good predictive per-

formance, defined as mean F1 score (across 5 trials)
greater than the average of all mean F1 scores or the
median of all mean F1 scores, whichever is greater.

4. Finally, select the mitigator with maximum precision
(in case of COMPAS, since true positives should be
prioritized) or recall (all other datasets, since false
negatives should be avoided).

Second step. Given the “best” mitigator configurations,
this step explores the Cartesian product of ensembles and
mitigators of Fig. 1 plus ensemble hyperparameters. For
bagging and boosting, the only ensemble-level hyperparam-
eter varied between configurations was the number of base
estimators: {1, 10, 100} for bagging and {1, 50, 500} for boost-
ing. Voting and stacking use lists of heterogeneous base
estimators as hyperparameters. In our experiments, these
lists contained either 4 mitigated or 4 unmitigated base es-
timators. For the in-estimator mitigation case these were
{PrejudiceRemover, GerryFairClassifier, MetaFairClassi-
fier, and AdversarialDebiasing}. Lastly, stacking also has
a passthrough hyperparameter controlling whether dataset
features were passed to the final estimator. If passthrough
is set to False, it is impossible to mitigate the final estimator
due to lack of dataset features; otherwise we mitigate either
the base estimators or final estimator, but not both. The
second step also uses 5 trials of 3-fold cross validation for
each experiment, running on a computing cluster with Intel
Xeon E5-2667 processors @ 3.30GHz. Every experiment
configuration run was allotted 4 cores and 12 GB memory.

Result preprocessing. To facilitate cross-dataset compar-
isons, we applied the following procedure on a per-dataset
basis for each metric of interest: (i) given all results, map all
values to the same region of metric space around the point
of optimal fairness (i.e. for disparate impact, we use the
reciprocal of a value if it is larger than 1 for downstream
calculations, and for statistical parity difference, we use
the absolute value), and (ii) min-max scale the mean and
standard deviation of the metric of interest, separately. After
doing this for all datasets, we group remaining results by
mitigator kind and ensemble type, and average the scaled
values over all datasets for each group. Given a metric M ,
we refer to the result of this procedure using mean values
as “standardized M outcome” and using standard deviation
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Figure 2. Guidance diagram for picking a good starting configuration given dataset characteristics and a target metric.

No Mit. Pre- In- Post-

DO DV DO DV DO DV DO DV

No ensemble 0.49 0.05 0.84 0.10 0.87 0.26 0.62 0.04

Bagging 0.35 0.02 0.86 0.29 0.75 0.37 0.43 0.04
Boosting 0.34 0.02 0.94 0.57 0.86 0.19 0.44 0.03
Voting 0.30 0.05 0.73 0.80 0.46 0.08 0.00 0.00
Stacking 0.34 0.04 0.66 0.14 0.45 0.18 0.15 0.19

Table 2. Standardized Disparate impact Outcome (DO) and Volatil-
ity (DV). Note that DO and DV utilize different scales.

as “standardized M volatility”. The tables and figures that
follow report values normalized as described above.

Do ensembles help with fairness? Table 2 shows the dis-
parate impact results. Mitigation almost always improved
disparate impact outcomes, but ensemble learning generally
incurred a slight penalty relative to the no-ensemble base-
line. However, ensemble learning does generally reduce
disparate impact volatility. This increased stability may be
preferred over better yet more unstable predictions.

Do ensembles help predictive performance when there
is mitigation? Table 3 shows F1 results. Even with ensem-
ble learning, mitigation decreases predictive performance,
but relative to standalone mitigators, mitigated ensembles
typically have better outcomes or stability, but not both.
Except for a few cases, mitigated ensembles can help with
predictive performance or F1 volatility.

Guidance for method selection. To advise future prac-
titioners based on our results, we generated Fig. 2 from

No Mit. Pre- In- Post-

FO FV FO FV FO FV FO FV

No ensemble 0.84 0.16 0.58 0.49 0.78 0.71 0.83 0.18

Bagging 0.97 0.22 0.08 0.16 0.72 0.13 0.96 0.21
Boosting 1.00 0.13 0.07 0.14 0.80 0.44 0.98 0.14
Voting 0.88 0.14 0.00 0.46 0.75 0.38 0.58 0.49
Stacking 0.95 0.13 0.55 0.56 0.90 0.46 0.90 0.29

Table 3. Standardized F1 outcome (FO) and volatility (FV).

optimal configurations for particular metrics and data se-
tups. To generate it, we do the following:

1. Organize all results by dataset.
2. Filter results for each dataset to ones that occur in

the top 33% of results for both standardized disparate
impact outcome and standardized F1 outcome.

3. Place each result into one of four quadrants based on
the dataset’s baseline fairness and size.

4. Average each metric in each quadrant while grouping
by model configuration.

5. Report the best configuration per quadrant and metric.
A more detailed version of this diagram appears in our
technical report [7]. We intend to validate this diagram
via automatic parameter search and leave-one-dataset-out
approaches in future work.

4. Conclusion
This paper introduces a library of modular bias mitigators
and ensembles. Our experiments confirm that ensembles can
improve fairness stability and provide guidance to practition-
ers. Of course, the best approach depends on the setting.
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