
Report from Dagstuhl Seminar 17441

Big Stream Processing Systems
Edited by
Tilmann Rabl1, Sherif Sakr2, and Martin Hirzel3

1 TU Berlin, DE, rabl@tu-berlin.de
2 KSAU-HS, Riyadh, SA, sakrs@ksau-hs.edu.sa
3 IBM TJ Watson Research Center – Yorktown Heights, US, hirzel@us.ibm.com

Abstract
This report summarizes the Dagstuhl Seminar 17441 on “Big Stream Processing Systems” and
documents its talks and discussions. The seminar brought together 29 researchers in various
areas related to stream processing including systems, query languages, applications, semantic
processing and benchmarking. The seminar program included four tutorials that have been
delivered by experts in the various topics in addition to 29 lightening talks by the participants
of the seminar. In this report, the abstracts of these talks are documented. Two working groups
has been formed during the seminar. A report about the discussion outcomes of each group is
presented in this report.

Seminar October 29–3, 2017 – http://www.dagstuhl.de/17441
1998 ACM Subject Classification C.2.4 Distributed Systems, C.2.4 Distributed Databases,

H.2.4 Query Processing, D.3.2 Data-Flow Languages
Keywords and phrases Big Data, Big Streams, Stream Processing Systems, Benchmarking, De-

clarative Programming
Digital Object Identifier 10.4230/DagRep.7.10.111

1 Executive Summary

Martin Hirzel
Tilmann Rabl
Sherif Sakr

License Creative Commons BY 3.0 Unported license
© Martin Hirzel, Tilmann Rabl, and Sherif Sakr

As the world gets more instrumented and connected, we are witnessing a flood of digital
data that is getting generated, in a high velocity, from different hardware (e.g., sensors) or
software in the format of streams of data. Examples of this phenomena are crucial for several
applications and domains including financial markets, surveillance systems, manufacturing,
smart cities and scalable monitoring infrastructure. In these applications and domains, there
is a crucial requirement to collect, process, and analyze big streams of data in order to extract
valuable information, discover new insights in real-time and to detect emerging patterns and
outliers. Recently, several systems (e.g., Apache Apex, Apache Flink, Apache Storm, Heron,
Spark Streaming,) have been introduced to tackle the real-time processing of big streaming
data. However, there are several challenges and open problems that need to be addressed in
order improve the state-of-the-art in this domain and push big stream processing systems to
make them widely used by large number of users and enterprises. The aim of this seminar
was to bring together active and prominent researchers, developers and practitioners actively
working in the domain of big stream processing to discuss very relevant open challenges and

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Big Stream Processing Systems, Dagstuhl Reports, Vol. 7, Issue 10, pp. 111–138
Editors: Tilmann Rabl, Sherif Sakr, and Martin Hirzel

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17441
http://dx.doi.org/10.4230/DagRep.7.10.111
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

112 17441 – Big Stream Processing Systems

research directions. The plan was to work on specific challenges including the trade-offs of
the various design decisions of big stream processing systems, the declarative stream querying
and processing languages, and the benchmarking challenges of big stream processing systems.

On Monday morning, the workshop officially kicked off with a round of introductions
about the participants where adhoc clusters for the interests of the participants have been
defined. The clusters have been revolving around the topics of systems, query languages,
benchmarking, stream mining and semantic stream processing. The program of the seminar
included 4 tutorials, one per day. On Monday, Martin Strohbach from AGT International
presented different case studies and scenarios for large scale stream processing in different
application domains. On Tuesday, we enjoyed the systems tutorial which has been presented
by Paris Carbone from KTH Royal Institute of Technology, Thomas Weise from Data Torrent
Inc. and Matthias J. Sax from Confluent Inc. Paris presented an interesting overview of
the journey of stream processing systems, Thomas presented the recent updates about the
Apache Apex system while Matthias presented an overview about the Apache Kafka and
Kafka Streams projects. On Wednesday, Martin Hirzel from IBM TJ Watson Research
Center presented a tutorial about the taxonomy and classifications of stream processing
languages. On Thursday, Tilmann Rabl from TU Berlin presented a tutorial about the
challenges of benchmarking big data systems in general in addition to the specific challenges
for benchmarking big stream processing systems. All tutorials have been very informative,
interactive and involved very deep technical discussions. On Thursday evening, we had a
lively demo session where various participants demonstrated their systems to the audience on
parallel round-table interactive discussions. On Wednesday, the participants split into two
groups based on common interest in selected subset of the open challengers and problems.
The selected 2 topics of the groups were systems and query languages. Thursday schedule
was dedicated to working group efforts. Summary about the outcomes of these 2 groups
is included in this report. It is expected that work from at least one of the groups to be
submitted for publication, and we expect further research publications to result directly from
the seminar.

We believe that the most interesting aspect of the seminar was providing the opportunity
to freely engage in direct and interactive discussions with solid experts and researchers in
various topics of the field with common focused passion and interest. We believe that this
is a unique feature for Dagstuhl seminars. We received very positive feedback from the
participants and we believe that most of the participants were excited with the scientific
atmosphere at the seminar and reported that the program of the seminar was useful for them.
In summary, we consider the organization of this seminar as a success. We are grateful for
the Dagstuhl team for providing the opportunity and full support to organize it. The success
of this seminar motivated us to plan for future follow-up seminars to continue the discussions
on the rapid advancements on the domain and plan for narrower and more focused discussion
with concrete outputs for the community.

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 113

2 Table of Contents

Executive Summary
Martin Hirzel, Tilmann Rabl, and Sherif Sakr . 111

Overview of Talks
Approximate data analytics systems
Pramod Bhatotia . 115
Data Stream Mining
Albert Bifet . 115
Analysis of Queries on Big Graphs
Angela Bonifati . 116
Privacy Preserving, Peta-scale Stream Analytics for Domain-Experts
Michael H. Böhlen . 117
Interconnecting the Web of Data Streams
Jean-Paul Calbimonte . 117
Consistent Large-Scale Data Stream Processing
Paris Carbone . 118
Tutorial: Data Stream Processing Systems
Paris Carbone . 119
Cyber-Physical Social Systems for City-wide Infrastructures
Javier David Fernández-García . 120
Scaling SPADE to “Big Streams”
Ashish Gehani . 121
Benchmarking Enterprise Stream Processing Architectures
Günter Hesse . 123
Sliding-Window Aggregation in Worst-Case Constant Time
Martin Hirzel . 123
Tutorial: Stream Processing Languages
Martin Hirzel . 124
Benchmarking Semantic Stream Processing Platforms for IoT Applications
Ali Intizar . 124
Efficient evaluation of streaming queries comprising user-defined functions
Asterios Katsifodimos . 125
Towards an effort for Adaptable Stream Processing Engines
Nikos Katsipoulakis . 126
Druid as an Example of a Federated Streaming Data System
Henning Kropp . 126
Autonomous Semantic Stream Processing
Danh Le Phuoc . 127
Collaborative Distributed Processing Pipelines (CDPPs)
Manfred Hauswirth . 127

17441

114 17441 – Big Stream Processing Systems

FlowDB: Integrating Stream Processing and Consistent State Management
Alessandro Margara . 128
Mining Big Data Streams – Better Algorithms or Faster Systems?
Gianmarco Morales . 128
Data Streams in IoT Applications: Data Quality and Data Integration
Christoph Quix . 129
Benchmarking Modern Streaming Systems
Tilmann Rabl . 130
Tutorial: Benchmarking
Tilmann Rabl . 130
Collaborative Benchmarking of Computer Systems
Sherif Sakr . 131
Low Latency Processing of Transactional Data Streams
Kai-Uwe Sattler . 131
Streams and Tables in Apache Kafka’s Streams API
Matthias J. Sax . 132
IoT Stream Processing Tutorial
Martin Strohbach, Alexander Wiesmaier, and Arno Mittelbach 132
Quantifying and Detecting Incidents in IoT Big Data Analytics
Hong-Linh Truong . 133
Data Management of Big Spatio-temporal Data from Streaming and Archival
Sources
Akrivi Vlachou . 133
Stream Processing with Apache Apex
Thomas Weise . 134
Lifetime-Based Memory Management in Distributed Data Processing Systems
Yongluan Zhou . 134

Working groups
Working Group: Languages and Abstractions
Martin Hirzel . 135
Working Group: Systems and Applications
Tilmann Rabl . 136

Participants . 138

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 115

3 Overview of Talks

3.1 Approximate data analytics systems
Pramod Bhatotia (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© Pramod Bhatotia

Joint work of Pramod Bhatotia, Le Quoc Do, Martin Beck, Dhanya Krishnan, Ruichuan Chen, Christof Fetzer,
Thorsten Strufe, Volker Hilt, Istemi Akkus, Rodrigo Rodrigues, Spyros Blanas

We present approximate data analytics systems. Approximate computing aims for efficient
execution of workflows where an approximate output is sufficient instead of the exact output.
The idea behind approximate computing is to compute over a representative sample instead
of the entire input dataset. Thus, approximate computing — based on the chosen sample size
— can make a systematic trade-off between the output accuracy and computation efficiency.

In this talk, I presented data analytics system for approximate computing. Our work
aims for an efficient mechanism based on approximation for large-scale data analytics. In
particular, I presented four systems for approximate computing: (1) StreamApprox, a stream
analytics systems for approximate computing, (2) PrivApprox, a privacy-preserving stream
analytics system using approximate computing, (3) IncApprox, a data analytics system
that combines incremental and approximate computing, and lastly, (4) ApproxJoin, a data
analytics to support approximate distributed joins.

We have built our systems based on prominent distributed data analytics platforms,
such as Apache Spark Streaming, and Apache Flink, which allow to transparently target
a large class of existing applications. The source code of our approximate data analytics
systems along with the full experimental evaluation setup is publicly available for the research
community.

Approx [1]: https://privapprox.github.io/
StreamApprox [3]: https://streamapprox.github.io/
IncApprox [2]: https://gitlab.com/tudinfse/incapprox

References
1 Do Le Quoc, Martin Beck, Pramod Bhatotia, Ruichuan Chen, Christof Fetzer, Thorsten

Strufe. PrivApprox: Privacy-Preserving Stream Analytics. USENIX ATC, 2017.
2 Dhanya R. Krishnan, Do Le Quoc, Pramod Bhatotia, Christof Fetzer, Rodrigo Rodrigues.

IncApprox: A Data Analytics System for Incremental Approximate Computing. WWW,
2016.

3 Do Le Quoc, Ruichuan Chen, Pramod Bhatotia, Christof Fetzer, Volker Hilt, Thorsten
Strufe. StreamApprox: approximate computing for stream analytics. Middleware, 2017.

3.2 Data Stream Mining
Albert Bifet (Telecom ParisTech, FR)

License Creative Commons BY 3.0 Unported license
© Albert Bifet

Big Data and the Internet of Things (IoT) have the potential to fundamentally shift the way
we interact with our surroundings. The challenge of deriving insights from the Internet of
Things (IoT) has been recognized as one of the most exciting and key opportunities for both
academia and industry. Advanced analysis of big data streams from sensors and devices is

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://privapprox.github.io/
https://streamapprox.github.io/
https://gitlab.com/tudinfse/incapprox
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

116 17441 – Big Stream Processing Systems

bound to become a key area of data mining research as the number of applications requiring
such processing increases. Dealing with the evolution over time of such data streams, i.e.,
with concepts that drift or change completely, is one of the core issues in stream mining. I
will present an overview of data stream mining, and I will introduce two popular open source
tools for data stream mining.

3.3 Analysis of Queries on Big Graphs
Angela Bonifati (University Claude Bernard – Lyon, FR)

License Creative Commons BY 3.0 Unported license
© Angela Bonifati

Joint work of Angela Bonifati, Nicky Advokaat, Guillaume Bagan, Radu Ciucanu, George Fletcher, Benoit Groz,
Aurelien Lemay, Wim Martens, Thomas Timm

Main reference Angela Bonifati, Wim Martens, Thomas Timm: “An Analytical Study of Large SPARQL Query
Logs”, PVLDB 11(2): 149–161, 2017.

URL http://www.vldb.org/pvldb/vol11/p149-bonifati.pdf

My research revolves around graph data management by focusing in particular on graph
query processing, graph benchmarking and graph query log analysis . Several modern graph
query languages are capable of expressing sophisticated graph queries, which return nodes
connected by arbitrarily complex labeled paths. Such paths can be synthesized by means of
regular expressions and often involve recursion. Such graph queries are known as Regular
Path Queries (RPQ) and correspond to Property Paths in Sparql 1.1 to make an example of
a concrete graph query language. Graph queries arbitrarily combine RPQ with conjunctions
and unions to constitute a comprehensive query language for graph databases. Recently,
with my colleagues I have been investigating graph queries and their different fragments by
studying the synthetic generation problem of graph instances and graph query workloads
[1, 2], along with the complexity of graph query evaluation [3] and the analysis of a large
corpus of real-world graph queries [4]. In the latter work, we have examined streaks of queries
that are queries that originate from gradual modifications of a seed query. If we switch from
batch processing to online processing, these streaks can be considered as streams of queries
collected from SPARQL endpoints. In summary, graph benchmarking and graph log analysis
are essential to shape the future capabilities of graph query engines. Hence, they have a
strong potential to influence the work of our community on graph query processing and
optimization.

References
1 Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George Fletcher, Aurelien Lemay, and

Nicky Advokaat. Generating Flexible Workloads for Graph Databases. PVLDB, 9(13):1447–
1460, 2016.

2 Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George Fletcher, Aurelien Lemay, and
Nicky Advokaat. gMark: Schema-Driven Generation of Graphs and Queries. IEEE Trans.
on Knowl. Data Eng., 29(4): 856–869, 2017

3 Guillaume Bagan, Angela Bonifati, and Benoit Groz. A trichotomy for regular simple path
queries on graphs. In Proceedings of PODS, pages 261–272, 2013.

4 Angela Bonifati, Wim Martens, Thomas Timm: An Analytical Study of Large SPARQL
Query Logs. PVLDB 11(2): 149–161 (2017)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.vldb.org/pvldb/vol11/p149-bonifati.pdf
http://www.vldb.org/pvldb/vol11/p149-bonifati.pdf
http://www.vldb.org/pvldb/vol11/p149-bonifati.pdf

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 117

3.4 Privacy Preserving, Peta-scale Stream Analytics for
Domain-Experts

Michael H. Böhlen (Universität Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Michael H. Böhlen

Joint work of Michael H. Böhlen, Abraham Bernstein, Daniele dell’Aglio, Muhammad Saad, Pengcheng Duan

Production of big data will soon outpace the availability of both storage and computer science
experts who know how to handle such data. Moreover, society is increasingly concerned about
data protection. Addressing these issues requires so-called stream-processing systems that
continuously analyse incoming data (rather than store it) and allow non-computer scientists
to specify its analysis in a privacy-preserving manner. We will develop a petabyte-scale
stream analytics system that enables non-computer scientists to analyse high-performance
data streams on commodity hardware. First, we provide a declarative language based
on traditional querying but with extensions for statistical operations and capabilities for
real-time operations. Second, the language permits users to specify the desired level of
privacy. Third, the system translates the statistical functions and privacy specifications into
executable computations. Finally, the runtime environment selects the best approach for
optimising execution using existing systems (e.g. Apache Flink, Spark Streaming or Storm).
To evaluate the robustness and functionality of our system, we will replicate the processing
pipeline for the Australian Square Kilometre Array Pathfinder radio telescope. This will
generate up to 2.5 gigabytes per second of raw data. To evaluate privacy preservation, we
will analyse the TV viewing habits of around 3 million individuals.

3.5 Interconnecting the Web of Data Streams
Jean-Paul Calbimonte (HES-SO Valais – Sierre, CH)

License Creative Commons BY 3.0 Unported license
© Jean-Paul Calbimonte

Main reference Daniele Dell’Aglio, Danh Le Phuoc, Anh Lê Tuán, Muhammad Intizar Ali, Jean-Paul Calbimonte:
“On a Web of Data Streams”, in Proc. of the Workshop on Decentralizing the Semantic Web 2017
co-located with 16th Int’l Semantic Web Conf. (ISWC), 2017.

URL http://ceur-ws.org/Vol-1934/contribution-11.pdf
Main reference Jean-Paul Calbimonte: “Linked Data Notifications for RDF Streams”, in Joint Proc. of the Web

Stream Processing workshop (WSP 2017) and the 2nd Int’l Workshop on Ontology Modularity,
Contextuality, and Evolution (WOMoCoE 2017) co-located with 16th Int’l Semantic Web
Conference (ISWC 2017), pp. 66–73, Vienna, Austria, October 22nd, 2017.

URL http://ceur-ws.org/Vol-1936/paper-06.pdf

The Web evolves toward a vast network of data, making it possible to publish, discover, access,
process, and consume information through standard protocols. This Web of Data increasingly
includes data streams, whose velocity and variety challenge current methods and techniques
for processing/consumption/publishing. Although semantic data models such as RDF have
shown to be successful for addressing these issues for stored data, it remains an open problem
for data streams on the Web. We propose using standard protocols such as Linked Data
Notifications (LDN) as the backbone for sending, receiving and consuming stream elements
on the Web. This will allow a wider reuse of stream, going beyond existing silos and technical
and administrative barriers. To achieve this, we envision the use of semantically rich metadata
that describes these streams, regardless of their format and structure, providing the means
to enhance findability, accessibility, linkability of these streams.

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://ceur-ws.org/Vol-1934/contribution-11.pdf
http://ceur-ws.org/Vol-1934/contribution-11.pdf
http://ceur-ws.org/Vol-1934/contribution-11.pdf
http://ceur-ws.org/Vol-1934/contribution-11.pdf
http://ceur-ws.org/Vol-1936/paper-06.pdf
http://ceur-ws.org/Vol-1936/paper-06.pdf
http://ceur-ws.org/Vol-1936/paper-06.pdf
http://ceur-ws.org/Vol-1936/paper-06.pdf
http://ceur-ws.org/Vol-1936/paper-06.pdf

118 17441 – Big Stream Processing Systems

3.6 Consistent Large-Scale Data Stream Processing
Paris Carbone (KTH Royal Institute of Technology, SE)

License Creative Commons BY 3.0 Unported license
© Paris Carbone

Joint work of Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, Kostas Tzoumas
Main reference Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, Kostas Tzoumas: “State

Management in Apache Flink®: Consistent Stateful Distributed Stream Processing”, PVLDB,
Vol. 10(12), pp. 1718–1729, 2017.

URL http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf

An early dogma on data stream processing technology labeled that tech as a fast, yet
approximate, method for data analysis [5]. This argument has its roots on early design
choices that considered limited in-memory data structures to maintain state, the lack of
scale-out approaches seen in Map-Reduce and most importantly the conception that offering
strong state consistency guarantees was non-trivial in the context of streams. Today, we
are witnessing a ’big stream processing’ revolution where stream processors such as Apache
Flink, Kafka-Streams, Apex, Millwheel [4] (Beam/Dataflow Cloud [2] runner) etc. are being
adopted as building blocks for scalable, continuous processing applications and pipelines.
Modern data stream processors offer built-in state management with exactly-once end-to-
end guarantees, eliminating the possibility of data loss or state inconsistencies as well as
scaling-out in a data-parallel manner. The two dominant architectures to state management
are 1) Externally persisted state in a transactional data store [4] and 2) Local state to
compute nodes that is committed and replicated using consistent distributed snapshots flink
[3, 1],ibmstreams,apex. Throughout this lightning talk and discussion we analyse the reasons
behind locally maintained state, primarily in the context of Apache Flink [1] and its core
snapshotting algorithm. We show that snapshots can be used for all operational needs of a
long-running application such as live reconfiguration, fault tolerance, software patches and
versioning. Finally, we address the costs of employing such an architecture both in terms of
runtime overhead and reconfiguration time.

References
1 P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, K. Tzoumas, “State management in

Apache Flink®: consistent stateful distributed stream processing” Proceedings of the VLDB
Endowment, 2017.

2 Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Fernández-Moctezuma, R. J., Lax,
R., McVeety, S., Mills, D., Perry, F., Schmidt, E., et al.: The dataflow model: a practical
approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-
order data processing. VLDB (2015)

3 P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and K. Tzoumas, “Apache
flink: Stream and batch processing in a single engine,” IEEE Data Engineering Bulletin,
p. 28, 2015.

4 Akidau T, Balikov A, Bekiroglu K, Chernyak S, Haberman J, Lax R, McVeety S, Mills
D, Nordstrom P, Whittle S (2013) MillWheel: Fault-tolerant stream processing at internet
scale. In: VLDB

5 The Lambda Architecture. http://lambda-architecture.net/

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf
http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf
http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf
http://www.vldb.org/pvldb/vol10/p1718-carbone.pdf
http://lambda-architecture.net/

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 119

3.7 Tutorial: Data Stream Processing Systems
Paris Carbone (KTH Royal Institute of Technology, SE)

License Creative Commons BY 3.0 Unported license
© Paris Carbone

Conventional data management considers data, in its traditional definition, as facts and
statistics organised and collected together for future reference or analysis. A wide family
of database management systems designed around the principle of having data as a static
component, yet allowing complex and flexible retrospective analysis on that data such as
declarative adhoc sql queries. Large-scale data processing architectures aimed to scale out
those technologies, examples are Map-Reduce and the Apache Spark stack. Yet, regardless
of the undeniable scale-out we effectively got the same old perception of data processing in a
“new outfit”.

Data stream processing revolutionizes the way we define data in the first place, lifting its
context from retrospective data set analysis to continuous unbounded processing coupled
with persistent application state. Parts of that technology have been available in different
primary forms and domains, such as network-centric processing on byte streams, functional
programming (e.g., monads), actor programming and materialized views. However, we now
see how all of these ideas have been put together to form a system architecture that is built
and therefore keeps evolving around the notion of data as an unbounded collective stream of
facts.

This new “Scalable Stream Processing” architecture has its own stack. Starting from
the storage layer, dedicated partitioned logs such as Apache Kafka and Pravega replace
distributed file systems (e.g., HDFS). Partitioned logs have unique characteristics that build
on the notion of streams such as event stream producers, consumers, delivery guarantees as
well as stream reconfiguration capabilities. At the middle, we have data compute systems such
as Flink, Kafka-Streams, Apex, Timely-Dataflow and Spark-Streaming that offer continuous
stateful stream processing with, most often, end-to-end exactly-once processing guarantees.
Furthermore, the semantics of all these systems have been lifted from primitive per-event
processing to declarative high-level abstractions such as stream windowing (triggers, event-
time domain integration, sessions etc.). Finally, at the top-most layer we can see new forms
of libraries and user-facing programming models covering relational event streams (stream
sql), complex event processing (cep) as well as newly formed domain-specific languages and
models for streams.

The ultimate aim of the tutorial is to offer a top-down view of all these concepts and pose
potential insights of the upcoming needs of stream processing technology. On that end, we
discuss the prospects and benefits of standardization, both in terms of runtime characteristics
(e.g., snapshots), core programming models (e.g., Beam) and finally higher-level APIs (Stream
SQL, Calcite, complex event processing APIs).

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

120 17441 – Big Stream Processing Systems

3.8 Cyber-Physical Social Systems for City-wide Infrastructures
Javier David Fernández-García (Wirtschaftsuniversität Wien, AT)

License Creative Commons BY 3.0 Unported license
© Javier David Fernández-García

Main reference Aljbin Ahmeti, Saimir Bala, Fajar J. Ekaputra, Javier D. Fernández, Elmar Kiesling, Andreas
Koller, Jan Mendling, Angelika Musil, Axel Polleres, Peb R. Aryan, Marta Sabou, Andreas Solti,
Juergen Musil: “CitySPIN: Cyber-Physical Social Systems for City-wide Infrastructures”, in Proc.
of the 13th Int’l Conf. on Semantic Systems, Posters and Demos track, 2017.

URL http://ceur-ws.org/Vol-2044/paper21

The potential of Big Semantic Data is under-exploited when data management is based
on traditional, human-readable RDF representations, which add unnecessary overheads
when storing, exchanging and consuming RDF in the context of a large-scale and machine-
understandable Semantic Web. In the first part of the talk, we briefly present our HDT
[1] proposal, a compact data structure and binary serialization format that keeps big
RDF datasets compressed while maintaining search and browse operations without prior
decompression. As a practical use case, we show the recent project LOD-a-lot [4], which
uses HDT to represent and query more than 28 billion triples of the current Linked Open
Data network. Then, we inspect the challenges of using a write-once-read-multiple HDT
format in a streaming scenario, providing details on two real-time solutions: i) SOLID [2], a
lambda-based compact triplestore to manage evolving Big Semantic Data, and ii) ERI [3], a
compact serialization format for RDF streams. Finally, we present CitySPIN [5], a project
using such Big Semantic Data technologies to integrate and manage cyber-physical social
systems in order to facilitate innovative Smart City infrastructure services.

References
1 J.D. Fernández, M.A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias. Binary

RDF Representation for Publication and Exchange. Journal of Web Semantics, 19:22–41,
2013.

2 M.A. Martínez-Prieto, C. E. Cuesta, M. Arias, and J.D. Fernández. The solid architecture
for real-time management of big semantic data. Future Generation Computer Systems, 47,
62–79, 2015.

3 J.D. Fernández, A. Llaves, and O. Corcho. Efficient RDF interchange (ERI) format for
RDF data streams. In Proceedings of the International Semantic Web Conference, pp.
244–259, 2014.

4 J.D. Fernández, W. Beek, M.A. Martínez-Prieto, and M. Arias. LOD-a-lot: A Queryable
Dump of the LOD cloud. In Proceedings of the International Semantic Web Conference,
pp. 75–83, 2017.

5 A. Ahmeti, S. Bala, F. J. Ekaputra, J.D. Fernández, E. Kiesling, A. Koller, J. Mendling,
A. Musil, A. Polleres, P.R. Aryan, M. Sabou, A. Solti, and J. Musil. CitySPIN: Cyber-
Physical Social Systems for City-wide Infrastructures. In 13th International Conference on
Semantic Systems, Posters and Demos track, 2017.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://ceur-ws.org/Vol-2044/paper21
http://ceur-ws.org/Vol-2044/paper21
http://ceur-ws.org/Vol-2044/paper21
http://ceur-ws.org/Vol-2044/paper21
http://ceur-ws.org/Vol-2044/paper21

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 121

3.9 Scaling SPADE to “Big Streams”
Ashish Gehani (SRI – Menlo Park, US)

License Creative Commons BY 3.0 Unported license
© Ashish Gehani

Joint work of Ashish Gehani, Hasanat Kazmi, Hassaan Irshad
Main reference Ashish Gehani, Hasanat Kazmi, Hassaan Irshad: “Scaling SPADE to "Big Provenance"”, in Proc.

of the 8th USENIX Workshop on the Theory and Practice of Provenance, TaPP 2016, Washington,
D.C., USA, June 8-9, 2016., USENIX Association, 2016.

URL https://www.usenix.org/conference/tapp16/workshop-program/presentation/gehani

Knowledge of the provenance of data has many uses, but also imposes novel challenges.
Video provenance facilitates fine-grained attribution [1]. Operating system provenance
enables principled forensic analysis [3], identification of the source of Grid infections [6], and
authenticity claims that span trust domains [5]. Since provenance metadata can become
voluminous, organizing it [4] and securing it [2] can be challenging. This has motivated
policy-based [7] and flexible middleware-supported [8] approaches.

SPADE [13] is SRI’s open source system for managing provenance metadata. It has served
as the research framework for exploring a range of ideas. These include automating the
capture of application-level provenance through compiler instrumentation [15], accelerating
distributed provenance queries via the use of sketches [12], optimizing the re-execution
of workflows [11], diagnosing problems in mobile applications [10], vetting application for
sensitive data flows [16], and studying tradeoffs in byte-, function-, and system-call level
provenance tracking [14].

Most systems that track data provenance in distributed environments opt to collect
it centrally giving rise to “big streams”. SPADE stores provenance at the host that it
originated from, thereby decomposing a single big stream into multiple, concurrent ones. It
avoids reconstruction of the entire global stream by introducing coordination points between
independent provenance streams. In SPADE’s terminology, these are called network artifacts
since they can be computed independently on each host using attributes of incoming and
outgoing network flows. At query time, SPADE extracts relevant subsets from each host’s
provenance stream. Using the network artifacts, these are stitched together into a single
response that corresponds to the appropriate subset of the global provenance stream.

Since each host gives rise to a big stream of provenance, scaling continues to pose a
challenge. Three strategies are adopted to ameliorate the issues that arise [9]. (1) Though
SPADE allows a provenance stream to be abstracted online through the use of filters, the
approach cannot be employed when details must be retained – in the case of forensic analysis,
for example. Instead responses to big stream queries are rewritten with transformers to
provide more comprehensible answers. (2) Merging auxiliary information into a big stream
is problematic when large integration windows are needed. If the stream schema allow,
content-based integration can be adopted to address this. (3) Deduplication of elements in
a stream requires memory linear in the history’s size. For big streams, this cost becomes
prohibitive. Leveraging persistent storage can address this at the cost of performance. A
hybrid approach that combines caching and Bloom filters is developed to screen out duplicates
with high probability.

References
1 Ashish Gehani and Ulf Lindqvist, VEIL: A System for Certifying Video Provenance,

9th IEEE International Symposium on Multimedia (ISM), 2007.

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.usenix.org/conference/tapp16/workshop-program/presentation/gehani
https://www.usenix.org/conference/tapp16/workshop-program/presentation/gehani
https://www.usenix.org/conference/tapp16/workshop-program/presentation/gehani
https://www.usenix.org/conference/tapp16/workshop-program/presentation/gehani

122 17441 – Big Stream Processing Systems

2 Ashish Gehani and Ulf Lindqvist, Bonsai: Balanced Lineage Authentication, 23rd
Annual Computer Security Applications Conference (ACSAC), IEEE Computer Society,
2007.

3 Ashish Gehani, Florent Kirchner, and Natarajan Shankar, System Support for Forensic
Inference, 5th IFIP International Conference on Digital Forensics, 2009.

4 Ashish Gehani, Minyoung Kim, and Jian Zhang, Steps Toward Managing Lineage
Metadata in Grid Clusters, 1st Workshop on the Theory and Practice of Proven-
ance (TaPP) affiliated with the 7th USENIX Conference on File and Storage Technologies
(FAST), 2009.

5 Ashish Gehani and Minyoung Kim, Mendel: Efficiently Verifying the Lineage of
Data Modified in Multiple Trust Domains, 19th ACM International Symposium on
High Performance Distributed Computing (HPDC), 2010.

6 Ashish Gehani, Basim Baig, Salman Mahmood, Dawood Tariq, and Fareed Zaffar, Fine-
Grained Tracking of Grid Infections, 11th ACM/IEEE International Conference on
Grid Computing (GRID), 2010.

7 Ashish Gehani, Dawood Tariq, Basim Baig, and Tanu Malik, Policy-Based Integration
of Provenance Metadata, 12th IEEE International Symposium on Policies for Distrib-
uted Systems and Networks (POLICY), 2011.

8 Ashish Gehani and Dawood Tariq, SPADE: Support for Provenance Auditing in Dis-
tributed Environments, 13th ACM/IFIP/USENIX International Conference on Middle-
ware, 2012.

9 Ashish Gehani, Hasanat Kazmi, and Hassaan Irshad, Scaling SPADE to “Big Proven-
ance”, 8th USENIX Workshop on the Theory and Practice of Provenance (TaPP), 2016.

10 Nathaniel Husted, Sharjeel Qureshi, Dawood Tariq, and Ashish Gehani, Android Proven-
ance: Diagnosing Device Disorders, 5th USENIX Workshop on the Theory and Prac-
tice of Provenance (TaPP) affiliated with the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2013.

11 Hasnain Lakhani, Rashid Tahir, Azeem Aqil, Fareed Zaffar, Dawood Tariq, and Ashish
Gehani, Optimized Rollback and Re-computation, 46th IEEE Hawaii International
Conference on Systems Science (HICSS), IEEE Computer Society, 2013.

12 Tanu Malik, Ashish Gehani, Dawood Tariq, and Fareed Zaffar, Sketching Distributed
Data Provenance, Data Provenance and Data Management for eScience, Studies in Com-
putational Intelligence, Vol. 426, Springer, 2013.

13 Support for Provenance Auditing in Distributed Environments, http://spade.csl.sri.com
14 Manolis Stamatogiannakis, Hasanat Kazmi, Hashim Sharif, Remco Vermeulen, Ashish Ge-

hani, Herbert Bos, and Paul Groth, Tradeoffs in Automatic Provenance Capture,
Provenance and Annotation of Data and Processes, Lecture Notes in Computer Science,
Vol. 9672, Springer, 2016.

15 Dawood Tariq, Maisem Ali, and Ashish Gehani, Towards Automated Collection of
Application-Level Data Provenance, 4th USENIX Workshop on the Theory and Prac-
tice of Provenance (TaPP), 2012.

16 Chao Yang, Guangliang Yang, Ashish Gehani, Vinod Yegneswaran, Dawood Tariq, and
Guofei Gu, Using Provenance Patterns to Vet Sensitive Behaviors in Android
Apps, 11th International Conference on Security and Privacy in Communication Networks
(SecureComm), 2015.

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 123

3.10 Benchmarking Enterprise Stream Processing Architectures
Günter Hesse (Hasso-Plattner-Institut – Potsdam, DE)

License Creative Commons BY 3.0 Unported license
© Günter Hesse

Main reference Guenter Hesse, Christoph Matthies, Benjamin Reissaus, Matthias Uflacker: “A New Application
Benchmark for Data Stream Processing Architectures in an Enterprise Context: Doctoral
Symposium”, in Proc. of the 11th ACM International Conference on Distributed and Event-based
Systems, DEBS 2017, Barcelona, Spain, June 19-23, 2017, pp. 359–362, ACM, 2017.

URL http://dx.doi.org/10.1145/3093742.3093902

Data stream processing systems have become increasingly popular tools for analyzing large
amounts of data that are generated in short periods of time. This is the case, for example
in Industry 4.0 and Internet of Things scenarios, where masses of sensor and log data are
continuously produced. This information can be leveraged in order to develop advanced
applications, e.g., in the area of predictive maintenance.

Analysis of such data streams can become even more valuable when it takes advantage
of traditional enterprise data, i.e., data from business systems such as an ERP system.
Combining this transactional data with streaming data can unveil new insights with respect
to processes and causal relations.

In recent years, many new data stream processing systems have been developed. Although
a broad variety of systems allows for more choice, choosing the system that best suits a given
use case becomes more difficult. Benchmarks are a common way of tackling this issue and
allow a comprehensive comparison of different systems and setups. Currently, no suitable
benchmark is available for comparing data stream processing architectures, especially when
non-streaming enterprise data needs to be integrated.

With Senska, we will develop a new application benchmark for data stream processing
architectures in an enterprise context that fills this gap.

3.11 Sliding-Window Aggregation in Worst-Case Constant Time
Martin Hirzel (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Martin Hirzel

Joint work of Kanat Tangwongsan, Martin Hirzel, Scott Schneider
Main reference Kanat Tangwongsan, Martin Hirzel, Scott Schneider: “Low-Latency Sliding-Window Aggregation

in Worst-Case Constant Time”, in Proc. of the 11th ACM International Conference on Distributed
and Event-based Systems, DEBS 2017, Barcelona, Spain, June 19-23, 2017, pp. 66–77, ACM, 2017.

URL http://dx.doi.org/10.1145/3093742.3093925

This talk briefly summarizes a paper with the same title that appeared at DEBS 2017
(International Conference on Distributed and Event-based Systems), where it won a best-
paper award. Sliding-window aggregation is a widely-used approach for extracting insights
from the most recent portion of a data stream. The aggregations of interest can usually be
cast as binary operators that are associative, but they are not necessarily commutative nor
invertible. Non-invertible operators, however, are difficult to support efficiently. The best
published algorithms require O(log n) aggregation steps per window operation, where n is
the sliding-window size at that point. This paper presents DABA, a novel algorithm for
aggregating FIFO sliding windows using only O(1) aggregation steps per operation in the
worst case (not just on average).

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3093742.3093902
http://dx.doi.org/10.1145/3093742.3093902
http://dx.doi.org/10.1145/3093742.3093902
http://dx.doi.org/10.1145/3093742.3093902
http://dx.doi.org/10.1145/3093742.3093902
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3093742.3093925
http://dx.doi.org/10.1145/3093742.3093925
http://dx.doi.org/10.1145/3093742.3093925
http://dx.doi.org/10.1145/3093742.3093925

124 17441 – Big Stream Processing Systems

3.12 Tutorial: Stream Processing Languages
Martin Hirzel (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Martin Hirzel

This tutorial gives an overview of several styles of stream processing languages. The tutorial
illustrates each style (relational, synchronous, explicit graph, etc.) with a representative
example language. Of course, for each style, there is an entire family of languages, and this
tutorial does not aim to be exhaustive. Overall, the field is diverse. Efforts to consolidate
and standardize should be informed by an overview of the state of the art, which this tutorial
provides.

3.13 Benchmarking Semantic Stream Processing Platforms for IoT
Applications

Ali Intizar (National University of Ireland – Galway, IE)

License Creative Commons BY 3.0 Unported license
© Ali Intizar

With the growing popularity of Internet of Things (IoT) technologies and sensors deployment,
more and more IoT-enabled applications are designed that can leverage the rich source of
streaming data to gather knowledge, support data analytics and provide useful applications
for end users such as smart city applications. Semantic Web and its underlying technologies
are an ideal fit to support distributed heterogeneous applications designed over deployed
sensors based infrastructure within smart cities. A merger of IoT and semantic Web has
lead to the inception of RDF stream processing (RSP) and several RSP based streaming
engines have been proposed. However, RSP technologies are still in their infancy and yet
to be tested for their performance and scalability. Particularly for smart city applications
IoT-enabled semantic solutions should be tested and benchmarked with the real deployments
and infrastructure accessible within smart cities.

The Citybench Benchmark is a comprehensive benchmarking suite to evaluate RSP
engines within smart city applications using real streaming data generated by smart cities.
CityBench includes real-time IoT data streams generated from various sensors deployed
within the city of Aarhus, Denmark. We provide a configurable testing infrastructure and a
set of continuous queries covering a variety of data and application dependent characteristics
and performance metrics, to be executed over RSP engines using CityBench datasets. This
work can be used as a baseline to identify capabilities and limitations of existing RSP engines
for smart city applications and provide support to smart city application developers to
benchmark their applications.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 125

3.14 Efficient evaluation of streaming queries comprising user-defined
functions

Asterios Katsifodimos (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Asterios Katsifodimos

Joint work of Asterios Katsifodimos, Paris Carbone, Jonas Traub, Volker Markl, Tilmann Rabl, Seif Haridi,
Sebastian Bress

Main reference Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, Volker Markl: “Cutty: Aggregate
Sharing for User-Defined Windows”, in Proc. of the 25th ACM International Conference on
Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28,
2016, pp. 1201–1210, ACM, 2016.

URL http://dx.doi.org/10.1145/2983323.2983807

Aggregation queries on data streams are evaluated over evolving and often overlapping
logical views called windows. While the aggregation of periodic windows were extensively
studied in the past through the use of aggregate sharing techniques such as Panes and Pairs,
little to no work has been put in optimizing the aggregation of very common, non-periodic
windows. Typical examples of non-periodic windows are punctuations and sessions which
can implement complex business logic and are often expressed as user-defined operators on
platforms such as Google Dataflow or Apache Storm. The aggregation of such non-periodic
or user-defined windows either falls back to expensive, best-effort aggregate sharing methods,
or is not optimized at all. In my talk I presented a technique to perform efficient aggregate
sharing for data stream windows, which are declared as user-defined functions (UDFs) and can
contain arbitrary business logic. I introduced the concept of User-Defined Windows (UDWs),
a simple, UDF-based programming abstraction that allows users to programmatically define
custom windows. I then defined semantics for UDWs, based on which we designed Cutty [1],
a low-cost aggregate sharing technique. I believe that user-defined windows is a noteworthy
programming abstraction to be included in future stream programming languages.

On the other side of the spectrum, real-time sensor data enables diverse applications such
as smart metering, traffic monitoring, and sport analysis. In the Internet of Things, billions
of sensor nodes form a sensor cloud and offer data streams to analysis systems. However,
it is impossible to transfer all available data with maximal frequencies to all applications.
Therefore, we need to tailor data streams to the demand of applications. In recent work we
contributed a technique that optimizes communication costs while maintaining the desired
accuracy. Our technique [2] schedules reads across huge amounts of sensors based on the data-
demands of a huge amount of concurrent queries. In the same spirit as Cutty, we introduce
user-defined sampling functions that define the data-demand of queries and facilitate various
adaptive sampling techniques, which decrease the amount of transferred data.

References
1 Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and Volker Markl. Cutty:

Aggregate sharing for user-defined windows. In the Proceedings of the 25th ACM Interna-
tional on Conference on Information and Knowledge Management, pp. 1201–1210. ACM,
2016.

2 Jonas Traub, Sebastian Breß, Tilmann Rabl, Asterios Katsifodimos, and Volker Markl.
Optimized on-demand data streaming from sensor nodes. In the Proceedings of the 2017
Symposium on Cloud Computing (SoCC ’17). ACM, New York, NY, USA, 586–597.

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2983323.2983807
http://dx.doi.org/10.1145/2983323.2983807
http://dx.doi.org/10.1145/2983323.2983807
http://dx.doi.org/10.1145/2983323.2983807
http://dx.doi.org/10.1145/2983323.2983807

126 17441 – Big Stream Processing Systems

3.15 Towards an effort for Adaptable Stream Processing Engines
Nikos Katsipoulakis (University of Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Nikos Katsipoulakis

Joint work of Nikos Katsipoulakis, Alexandros Labrinidis, Panos K. Chrysanthis

Online data flow processing requires that a Parallel Stream Processing Engine (pSPE)
processes data by the time they become available and queries execute for a long period of
time. Low operational cost and production of results in a timely fashion can be challenging
goals for a pSPE, considering the volatile nature of streams. When the arrival rate of
input data spikes, pSPEs need to be able to adjust their internal components, so that late
delivery of results is avoided. This calls for adaptable pSPEs that can react to fluctuations
in processing demands. This work aims to improve pSPEs’ adaptability by revisiting internal
components’ design and load- balancing techniques. Adaptability is studied from the aspect
of partitioning (Distribute), repartitioning (Divide), and load shedding (Drop). For each
technique, the current state of the art is examined, both analytically and experimentally,
and its shortcomings are exposed. In addition, new algorithms are proposed and this thesis’
goal is (i) the investigation of decision-making algorithms, for selecting the best technique,
(ii) the exploration of novel synergies among partitioning, repartitioning and load shedding.

References
1 N.R. Katsipoulakis, A. Labrinidis, and P. Chrysanthis, A holistic view of stream partition-

ing costs. PVLDB, pp. 1286–1297, 2017.
2 N.R. Katsipoulakis, C. Thoma, E.A. Gratta, et al., Ce-storm: Confidential elastic pro-

cessing of data streams. ACM SIGMOD, pp. 859–864, 2015.
3 T.N. Pham, N.R. Katsipoulakis, P.K. Chrysanthis, and A. Labrinidis, Uninterruptible

migration of continuous queries without operator state migration. SIGMOD Rec., vol. 46,
no. 3, pp. 17–22, 2017.

3.16 Druid as an Example of a Federated Streaming Data System
Henning Kropp (Hortonworks – München, DE)

License Creative Commons BY 3.0 Unported license
© Henning Kropp

Streaming systems are often looked at as long running queries executed on an unbounded
stream of data. In such a scenario a Federated Streaming Data System (FSDS) would execute
such queries on heterogeneous and autonomous streaming systems.

In modern large enterprises heterogeneous streaming systems inevitable arise from different
requirements, diverse system landscapes, evolving technology, and geographic distribution.
FSDSs enable such companies to fully leverage the full potential of their streamed data.
The success of unifying programming models like Apache Beam and Apache Calcite are a
testimony for the potential value federated streaming data systems hold.

Further Druid (http://druid.io/) could be seen as an example of a federated streaming
system. In it’s architecture Duid distinguishes between a group of realtime and a group of
historic nodes which use different kind of data access patterns to collect data from streams
and answer queries. Combining the two types of node types Druid uses a catalog and query
federation service, common to federated database systems, to transparently serve data from
two different kind of systems. Although Druid is more like a streaming database then a
streaming data system, it’s architectures gives an idea of how a FSDS could look like.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://druid.io/

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 127

3.17 Autonomous Semantic Stream Processing
Danh Le Phuoc (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Danh Le Phuoc

Semantic Data Stream enables embedding computational semantics of contextual information
and user/developer intentions into data stream generated from sensory data to structured
(dynamic) knowledge base. By its intrinsic nature, semantic data stream sources are dynam-
ically distributed in terms of spatial context, connectivity and distribution of the processing
flow. To deal with this dynamicity, we propose the autonomous semantic stream processing
model which sees semantic data streams as temporal RDF graphs (RDF streams). Via this
model, distributed stream processing agents can autonomously coordinate their execution
processes with their neighbour peers via exchanging control RDF streams among them. The
control RDF streams enable a local RDF-based stream processing engine to continuously
feed processing statuses from down stream processing agents such as data distribution, rate,
available resources, processing capabilities and connectivity (network connections and link
statuses, etc) to adaptively optimise its local processing pipelines. The adaptive optimisation
of an processing agent can be done continuously in a collaboratively fashion with its neighbour
peers which allow its to shift processing load and processing states to these peers. To realise
the processing model, we built an autonomous processing kernel, called CQELS (Continuous
Query Evaluation over Linked Stream) [1], which can run on small devices which collect
sensor data as stream sources as well as on gateways with more processing power that can
coordinate a small group of processing nodes. For dealing with big workload, the kernel can
be also run as a cluster of powerful processing nodes on the Cloud. With our CQELS kernel,
a distributed stream processing workflow is autonomously coordinated via its instances
deployed in highly dynamic network topologies of heterogeneous processing nodes.

References
1 Phuoc, D.L., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A Native and Adaptive Ap-

proach for Unified Processing of Linked Streams and Linked Data. In: ISWC. pp. 370–388
(2011)

3.18 Collaborative Distributed Processing Pipelines (CDPPs)
Manfred Hauswirth

License Creative Commons BY 3.0 Unported license
© Manfred Hauswirth

Joint work of Anja Feldmann, Manfred Hauswirth, Volker Markl
Main reference Anja Feldmann, Manfred Hauswirth, Volker Markl: “Enabling Wide Area Data Analytics with

Collaborative Distributed Processing Pipelines (CDPPs)”, in Proc. of the 37th IEEE International
Conference on Distributed Computing Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8, 2017,
pp. 1915–1918, IEEE Computer Society, 2017.

URL http://dx.doi.org/10.1109/ICDCS.2017.332

Novel concepts to organize the distribution and processing of information over the Internet in
a secure and safe way which is scalable are needed. An important building block for achieving
this goal are mobile edge clouds. A mobile edge cloud provides micro data centers which can
move in the network according to load or other parameters and requirements. This is another
form of virtualization which is transforming infrastructure everywhere, including network
components, end-user devices, and eventually even sensors to transparently use any kind

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICDCS.2017.332
http://dx.doi.org/10.1109/ICDCS.2017.332
http://dx.doi.org/10.1109/ICDCS.2017.332
http://dx.doi.org/10.1109/ICDCS.2017.332
http://dx.doi.org/10.1109/ICDCS.2017.332

128 17441 – Big Stream Processing Systems

of resource. To work efficiently and scalably, mobile edge clouds need to be complemented
by an appropriate world-wide network as well as sufficient backend computing power and
storage. Combining all of this, we will see a seamless integration of network, storage, and
computing in the future.

3.19 FlowDB: Integrating Stream Processing and Consistent State
Management

Alessandro Margara (Polytechnic University of Milan, IT)

License Creative Commons BY 3.0 Unported license
© Alessandro Margara

Joint work of Lorenzo Affetti, Alessandro Margara, Gianpaolo Cugola
Main reference Lorenzo Affetti, Alessandro Margara, Gianpaolo Cugola: “FlowDB: Integrating Stream Processing

and Consistent State Management”, in Proc. of the 11th ACM International Conference on
Distributed and Event-based Systems, DEBS 2017, Barcelona, Spain, June 19-23, 2017,
pp. 134–145, ACM, 2017.

URL http://dx.doi.org/10.1145/3093742.3093929

Recent advances in stream processing technologies led to their adoption in many large
companies, where they are becoming a core element in the data processing stack. In
these settings, stream processors are often used in combination with various kinds of data
management frameworks to build software architectures that combine data storage, processing,
retrieval, and mining. However, the adoption of separate and heterogeneous subsystems
makes these architectures overmuch complex, and this hinders the design, development,
maintenance, and evolution of the overall system. In this talk, we propose a new model
that integrates data management within a distributed stream processor. The model enables
individual stream processing operators to persist data and make it visible and queryable
from external components. It offers flexible mechanisms to control the consistency of data,
including transactional updates plus ordering and integrity constraints. We implemented the
model into the FlowDB prototype, and studied its overhead with respect to a pure stream
processing system using real world case studies and synthetic workloads, proving the benefits
of the proposed model by showing that FlowDB can outperform a state-of-the-art, in-memory
distributed database in data management tasks.

3.20 Mining Big Data Streams – Better Algorithms or Faster Systems?
Gianmarco Morales (QCRI – Doha, QA)

License Creative Commons BY 3.0 Unported license
© Gianmarco Morales

Main reference Gianmarco De Francisci Morales, Albert Bifet: “SAMOA: scalable advanced massive online
analysis”, Journal of Machine Learning Research, Vol. 16, pp. 149–153, 2015.

URL http://dl.acm.org/citation.cfm?id=2789277

The rate at which the world produces data is growing steadily, thus creating ever larger
streams of continuously evolving data. However, current (de-facto standard) solutions for big
data analysis are not designed to mine evolving streams. So, should we find better algorithms
to mine data streams, or should we focus on building faster systems?

In this talk, we debunk this false dichotomy between algorithms and systems, and we
argue that the data mining and distributed systems community need to work together to
bring about the next revolution in data analysis. In doing so, we introduce Apache SAMOA

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3093742.3093929
http://dx.doi.org/10.1145/3093742.3093929
http://dx.doi.org/10.1145/3093742.3093929
http://dx.doi.org/10.1145/3093742.3093929
http://dx.doi.org/10.1145/3093742.3093929
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dl.acm.org/citation.cfm?id=2789277
http://dl.acm.org/citation.cfm?id=2789277
http://dl.acm.org/citation.cfm?id=2789277

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 129

(Scalable Advanced Massive Online Analysis), an open-source platform for mining big data
streams (http://samoa.incubator.apache.org). Apache SAMOA provides a collection of
distributed streaming algorithms for data mining tasks such as classification, regression, and
clustering. It features a pluggable architecture that allows it to run on several distributed
stream processing engines such as Storm, Flink, and Samza.

As a case study, we present one of SAMOA’s main algorithms for classification, the
Vertical Hoeffding Tree (VHT). Then, we analyze the algorithm from a distributed systems
perspective, highlight the issue of load balancing, and describe a generalizable solution to it.
Finally, we conclude by envisioning system-algorithm co-design as a promising direction for
the future of big data analytics.

3.21 Data Streams in IoT Applications: Data Quality and Data
Integration

Christoph Quix (Fraunhofer FIT – Sankt Augustin, DE)

License Creative Commons BY 3.0 Unported license
© Christoph Quix

Data integration is an open challenge that has been addressed in static data management for
decades [1]. In data streams, the need of efficient data integration techniques is even more
significant as the data has to be integrated while the stream is being processed. This means
that the data can be processed only once and there should be not much overhead caused
by the integration operations. Data quality issues also often arise in the context of data
integration, as inconsistencies and incorrect values are revealed when several data sources
are combined.

In data stream processing for Internet-of-Things (IoT) applications, the challenges of
data integration and data quality are also very important as a network of interoperable
devices and systems can only be established, if there are appropriate tools and techniques
to integrate data and to verify the quality of the data. For example, in traffic applications,
various data sources have to be combined for traffic state estimation or queue-end detection
[3]. However, the techniques applied in this context are approximate techniques, such as
data stream mining or map matching; thus, a result should always include a confidence value
that indicates the quality. In industrial applications, the semantic heterogeneity of data, e.g.,
sensor data or data from ERP systems, requires a sophisticated semantic modeling of the
data. In the context of Industry 4.0 applications, it is becoming less important in which
factory a particular step of a manufacturing process is executed as the information of the
production process needs to be efficiently exchanged along the value chain [2].

In this talk, we present our recent results on data integration and data quality management
in data lakes [4, 5], and data streams [3].

References
1 Daniel Abadi, Rakesh Agrawal, Anastasia Ailamaki, Magdalena Balazinska, Philip A. Bern-

stein, Michael J. Carey, Surajit Chaudhuri, Jeffrey Dean, AnHai Doan, Michael J. Franklin,
Johannes Gehrke, Laura M. Haas, Alon Y. Halevy, Joseph M. Hellerstein, Yannis E. Ioan-
nidis, H. V. Jagadish, Donald Kossmann, Samuel Madden, Sharad Mehrotra, Tova Milo,
Jeffrey F. Naughton, Raghu Ramakrishnan, Volker Markl, Christopher Olston, Beng Chin
Ooi, Christopher Ré, Dan Suciu, Michael Stonebraker, Todd Walter, and Jennifer Widom.
The beckman report on database research. Commun. ACM, 59(2):92–99, 2016.

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

130 17441 – Big Stream Processing Systems

2 Malte Brettel, Niklas Friederichsen, Michael Keller, and Marius Rosenberg. How Virtualiz-
ation, Decentralization and Network Building Change the Manufacturing Landscape: An
Industry 4.0 Perspective. International Journal of Mechanical, Aerospace, Industrial and
Mechatronics Engineering, 8(1):37–44, 2014.

3 Sandra Geisler, Christoph Quix, Stefan Schiffer, and Matthias Jarke. An evaluation frame-
work for traffic information systems based on data streams. Transportation Research Part
C, 23:29–55, August 2012.

4 Rihan Hai, Sandra Geisler, and Christoph Quix. Constance: An intelligent data lake
system. In Fatma Özcan, Georgia Koutrika, and Sam Madden, editors, Proc. Intl. Conf.
on Management of Data (SIGMOD), pages 2097–2100, San Francisco, CA, USA, 2016.
ACM.

5 Matthias Jarke and Christoph Quix. On warehouses, lakes, and spaces: The changing role of
conceptual modeling for data integration. In Jordi Cabot, Cristina Gómez, Oscar Pastor,
Maria-Ribera Sancho, and Ernest Teniente, editors, Conceptual Modeling Perspectives.,
pages 231–245. Springer, 2017.

3.22 Benchmarking Modern Streaming Systems
Tilmann Rabl (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Tilmann Rabl

Due to the recent trends of increasingly fast analysis of data, an increasing number of stream
processing systems is built. Many of these include advanced features, such as a distributed
architecture, different notions of time, and fault tolerance, with varying performance charac-
teristics. These characteristics as well as basic stream processing operations pose specific
challenges in benchmarking. In this talk, we identify several of these challenges, most notably
the open world setup. In contrast to the closed world setup, where the streaming system
under test has full control of the rate of incoming data, in a open world setup, the system
has no influence on the data rate. While this is the typical setup of real deployments, there
is no benchmark that properly tests this configuration. Our experiments demonstrate that
current benchmarks fail to report correct latency measurements and overestimate throughput
measures for real world setups.

3.23 Tutorial: Benchmarking
Tilmann Rabl (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Tilmann Rabl

In this tutorial, we cover why, when, and how to benchmark. Before introducing different
types of benchmarks and standardized instantiations of those, we give a brief overview of
performance estimation. After this, we give an overview of existing stream benchmarks
and specific challenges when benchmarking streaming systems. Then, we exemplify the
development process of modern industry standard benchmarks through TPCx-HS.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 131

3.24 Collaborative Benchmarking of Computer Systems
Sherif Sakr (KSAU-HS – Riyadh, SA)

License Creative Commons BY 3.0 Unported license
© Sherif Sakr

Joint work of Sherif Sakr, Amin Shafaat, Fuad Bajaber, Ahmed Barnawi, Omar Batarfi, Abdulrahman Altalhi
Main reference Sherif Sakr, Amin Shafaat, Fuad Bajaber, Ahmed Barnawi, Omar Batarfi, Abdulrahman H.

Altalhi: “Liquid Benchmarking: A Platform for Democratizing the Performance Evaluation
Process”, in Proc. of the 18th International Conference on Extending Database Technology, EDBT
2015, Brussels, Belgium, March 23-27, 2015., pp. 537–540, OpenProceedings.org, 2015.

URL http://dx.doi.org/10.5441/002/edbt.2015.52

Performances evaluation, reproducibility and benchmarking represent crucial aspects for
assessing the practical impact of research results in the computer science

field. In spite of all the benefits (e.g., increasing impact, increasing visibility, improving
the research quality) that can be gained from performing extensive experimental evaluation
or providing reproducible software artifacts and detailed description of experimental setup,
the required effort for achieving these goals remains prohibitive. In practice, conducting an
independent, consistent and comprehensive performance evaluation and benchmarking is a
very time and resource consuming process. As a result, the quality of published experimental
results is usually limited and constrained by several factors such as: limited human power,
limited time, or shortage of computing resources.

Liquid Benchmarking has been designed as an online and cloud-based platform for
democratizing the performance evaluation and benchmarking processes. In particular, the
platform facilitates the process of sharing the experimental artifacts (software implementa-
tions, datasets, computing resources, benchmarking tasks) as services where the end user can
easily create, mashup, run the experiments and visualize the experimental results with zero
installation or configuration efforts. In addition, the collaborative features of the platform
enables the user to share and comment on the results of the conducted experiments so that
it can guarantee a transparent scientific crediting process.

3.25 Low Latency Processing of Transactional Data Streams
Kai-Uwe Sattler (TU Ilmenau, DE)

License Creative Commons BY 3.0 Unported license
© Kai-Uwe Sattler

Transactional database systems and data stream management systems have been thoroughly
investigated over the past decades. While both system approaches follow completely different
data processing models, i.e., push and pull based data forwarding, transactional stream
processing combines both models. This means that stream queries writing to tables represent
sequences of transactions and at the same time stream or batch queries on such tables get
transaction isolation. In this talk, we present the PipeFabric framework – a lightweight
publish-subscribe framework optimized for low-latency processing which comprises a library
of operators for data stream processing including windows, aggregates, grouping, joins, CEP,
matrix operations and a basic DSL for specifying dataflows. In addition to vectorized and
data-parallel processing, PipeFabric provides support for tables as sinks and sources for
streams as well as for maintaining persistent states of operators such as windows, aggregates,
CEP or mining models. In this talk, we discuss challenges of persistent state management in
low latency stream processing and sketch ideas for addressing these challenges.

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5441/002/edbt.2015.52
http://dx.doi.org/10.5441/002/edbt.2015.52
http://dx.doi.org/10.5441/002/edbt.2015.52
http://dx.doi.org/10.5441/002/edbt.2015.52
http://dx.doi.org/10.5441/002/edbt.2015.52
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

132 17441 – Big Stream Processing Systems

3.26 Streams and Tables in Apache Kafka’s Streams API
Matthias J. Sax (Confluent Inc – Palo Alto, US)

License Creative Commons BY 3.0 Unported license
© Matthias J. Sax

Apache Kafka introduces a novel approach for data stream processing compared to existing
systems. Most state-of-the-art stream processing system use the abstraction of record- or fact-
streams, that are append only sequences of immutable data items as first class citizen. Apache
Kafka introduces a second type of data stream, called a changelog stream. A changelog
stream is an append only sequence of updates and thus it models an evolving collection of data
items. This evolving collection of data items can also be described as a table or materialized
view and the individual records in the changelog stream are inserts/updates/deletes into
this table. In contrast to a “static” database table, a Kafka table can be described as a
continuously updating materialized view using the changelog topic as a kind of database redo
log. This model opens a new processing paradigm for data stream processing and bridges
the gap between static database tables and dynamic data streams. However, the current
understanding of the duality is streams and tables is limited and we lack a semantically sound
model that allows to define operator semantics that allows to reason about a computation or
to do relational-style query optimization like operator reordering.

3.27 IoT Stream Processing Tutorial
Martin Strohbach (AGT International – Darmstadt, DE), Alexander Wiesmaier, and Arno
Mittelbach

License Creative Commons BY 3.0 Unported license
© Martin Strohbach, Alexander Wiesmaier, and Arno Mittelbach

Main reference Vincenzo Gulisano, Zbigniew Jerzak, Roman Katerinenko, Martin Strohbach, Holger Ziekow: “The
DEBS 2017 Grand Challenge”, in Proc. of the 11th ACM International Conference on Distributed
and Event-based Systems, DEBS 2017, Barcelona, Spain, June 19-23, 2017, pp. 271–273, ACM,
2017.

URL http://dx.doi.org/10.1145/3093742.3096342

This tutorial covers the class of Internet of Things (IoT) streaming applications, i.e. applic-
ations that are concerned with interpreting and conceptualizing sensor data in real-time.
It focuses on applications from two distinct domains. The first domain relates to Sports
and Entertainment in which quantifiable insights about sports and entertainment events are
created from sensors deployed at a venue. The second domain relates to Industry 4.0 in
which sensor data from production machines is used to reduce energy costs and operations
and maintenance costs.

The application examples are based on commercial deployments that run on top of AGT
International’s Internet of Things Analytics (IoTA) platform. IoTA is an IoT-based AI
platform that provides cognitive and emotional computing skills to understand complex
physical environments in real-time.

With the applications described for sports and entertainment we illustrate the specific
characteristics of IoT streaming applications and the associated challenge of choosing an
appropriate streaming infrastructure. This choice is influenced by the lack of standardized
stream processing query languages, the multitude of available distributed streaming processing
systems, required flexibility for a wide range of programming languages in which IoT analytics

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3093742.3096342
http://dx.doi.org/10.1145/3093742.3096342
http://dx.doi.org/10.1145/3093742.3096342
http://dx.doi.org/10.1145/3093742.3096342
http://dx.doi.org/10.1145/3093742.3096342

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 133

are being implmented, the focus on low latencies and a large number of shortlived processing
pipelines, and the need to map processing results to a semantic data model.

We use the applications for Industry 4.0 to illustrate how stream processing applications
can be benchmarked using the HOBBIT benchmarking platform. We describe applications
in which we implemented solutions for reducing electricity costs for industrial customers by
predicting energy peaks and applications in which we detect anomalies in machine states.
We describe how we use the HOBBIT benchmarking platform in order to find anomalies
from production machines in data streamed as RDF. The platform was used as part of this
year’s DEBS Grand Challenge.

3.28 Quantifying and Detecting Incidents in IoT Big Data Analytics
Hong-Linh Truong (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Hong-Linh Truong

Systems for IoT Big data analytics are extremely complex. Different software components at
different software stacks from different infrastructures and providers are involved in handling
different types of data. Various types of incidents may occur during execution of such a big
data analytics due to problems occurring in software stacks, the data itself, and processing
algorithms. Here incidents reflect unexpected situations that might happen within data
themselves, machine learning algorithms, data pipelines, and underlying big data services
and computing platforms. It is important to address any incident that prevents the pipeline
running correctly or producing the expected quality of analytics. In this presentation, we
show the motivation for quantifying, monitoring and analytics of incidents in IoT big data
analytics systems and discuss our plan to tackle this important research.

3.29 Data Management of Big Spatio-temporal Data from Streaming
and Archival Sources

Akrivi Vlachou (University of Thessaly – Lamia, GR)

License Creative Commons BY 3.0 Unported license
© Akrivi Vlachou

An ever-increasing number of critical applications generate, collect, manage and process
spatio-temporal data related to the mobility of entities in different domains. In this talk, an
overview of the EU-funded project datAcron (http://www.datacron-project.eu/) is presented,
which addresses time-critical mobility forecasting in maritime and aviation domains using
Big Data analytics, focusing mainly on data management aspects. We describe a framework
for semantic integration of big mobility data with other data sources, which is necessary for
facilitating data analysis tasks, towards a unified representation of such data. First, data
transformation from a wide variety of heterogeneous streaming and archival sources to a
common representation (RDF) is performed. This is a typical situation in the analysis of
mobility data, such as maritime and aviation, where streaming position data of moving objects
need to be associated with static information (such as crossing sectors, protected geographical
areas, weather forecasts, etc.) in order to provide semantically enriched trajectories. Next,
spatio-temporal link discovery between spatio-temporal entities from diverse data sources is

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

134 17441 – Big Stream Processing Systems

performed. Finally, our framework supports RDF queries that combine historical, static and
streaming data. In this talk, we present an overview of the functionality of our framework as
well as the technical challenges that are posed.

3.30 Stream Processing with Apache Apex
Thomas Weise (Mountain View, US)

License Creative Commons BY 3.0 Unported license
© Thomas Weise

Our environment is generating increasing volumes of data from a rapidly growing number of
sources like mobile devices, sensors, industrial machines, web logs and more. Organizations are
looking to convert these continuous streams of data into insights and competitive advantage,
which requires systems that can process data at scale, with minimum delay and with accuracy.

The stream processing space has been evolving rapidly and adoption for real-world,
business critical use cases is increasing. A new generation of systems supports large-scale,
high-throughput, low-latency processing with correctness guarantees. Apache Apex, presented
here, is one of these stream processing systems. The project started in 2012 with the vision to
provide an alternative to MapReduce on Apache Hadoop YARN for low-latency processing.
Originally a proprietary product, the project was open sourced as Apache Software Foundation
project in 2015. Apex has been one of the innovators in the stream processing space with
features such as distributed checkpointing, dynamic resource allocation/scaling and dynamic
modification of the processing graph.

3.31 Lifetime-Based Memory Management in Distributed Data
Processing Systems

Yongluan Zhou

License Creative Commons BY 3.0 Unported license
© Yongluan Zhou

Joint work of Lu Lu, Xuanhua Shi, Yongluan Zhou, Xiong Zhang, Hai Jin, Cheng Pei, Ligang He, Yuanzhen Geng
Main reference Lu Lu, Xuanhua Shi, Yongluan Zhou, Xiong Zhang, Hai Jin, Cheng Pei, Ligang He, Yuanzhen

Geng: “Lifetime-Based Memory Management for Distributed Data Processing Systems”, PVLDB
9(12): 936–947, 2016.

URL http://www.vldb.org/pvldb/vol9/p936-lu.pdf

In-memory caching of intermediate data and eager combining of data in shuffle buffers have
been shown to be very effective in minimizing the re-computation and I/O cost in distributed
data processing systems like Spark and Flink. However, it has also been widely reported
that these techniques would create a large amount of long-living data objects in the heap,
which may quickly saturate the garbage collector, especially when handling a large dataset,
and hence would limit the scalability of the system. To eliminate this problem, we propose
a lifetime-based memory management framework, which, by automatically analyzing the
user-defined functions and data types, obtains the expected lifetime of the data objects, and
then allocates and releases memory space accordingly to minimize the garbage collection
overhead. In particular, we present Deca, a concrete implementation of our proposal on top
of Spark, which transparently decomposes and groups objects with similar lifetimes into byte
arrays and releases their space altogether when their lifetimes come to an end. An extensive

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.vldb.org/pvldb/vol9/p936-lu.pdf
http://www.vldb.org/pvldb/vol9/p936-lu.pdf
http://www.vldb.org/pvldb/vol9/p936-lu.pdf
http://www.vldb.org/pvldb/vol9/p936-lu.pdf

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 135

experimental study using both synthetic and real datasets shows that, in comparing to Spark,
Deca is able to 1) reduce the garbage collection time by up to 99.9%, 2) to achieve up to
22.7x speed up in terms of execution time in cases without data spilling and 41.6x speedup
in cases with data spilling, and 3) to consume up to 46.6% less memory.

4 Working groups

4.1 Working Group: Languages and Abstractions
Martin Hirzel (IBM TJ Watson Research Center – Yorktown Heights, US)

License Creative Commons BY 3.0 Unported license
© Martin Hirzel

Based on the definitions and survey from the corresponding tutorial, this working group
identified and described three challenges faced by stream processing languages.

Variety of data models is a challenge for stream processing languages. A data model
organizes elements of data with respect to their semantics, their logical composition into data
structures, and their physical representation. Producers and consumers of streams to and
from a streaming application dictate data models it must handle, and the application’s own
conversion and processing needs drive additional data-model variety. There is no consensus on
what a stream data item is. At one extreme, in StreamIt, each data item is a simple number,
while at the other extreme, C-SPARQL streams entire self-describing graphs. Streaming
languages have so far failed to consolidate on a data model because data-model variety is a
difficult challenge.

Data-model variety causes streaming-specific issues, since the data model affects the
speed of serialization, transmission, compression, and dynamic checks for the presence or
absence of certain fields, and because the online setting leaves no time for separate batch
data integration. Some stream processing languages are designed around their data model,
e.g., CQL on tuples or path expressions on XML trees. Furthermore, the data model enables
streaming-language compilers to provide helpful error messages and optimizations.

The goal is for streaming languages to let the programmer use the logical data model
they find most convenient while letting the compiler choose the best physical representation.
Metrics of success are the expressive power of the language along with its throughput, latency,
and resource consumption.

Veracity with simplicity is a challenge for stream processing languages. Veracity means
producing accurate and factual results, and simplicity means avoiding unnecessary language
complexity. There are several reasons why streaming veracity is hard. Sensors producing
input data have limited precision, energy, and memory. In long-running and loosely-coupled
streaming applications, sources come and go. And approximate stream algorithms and
stream mining introduce additional uncertainty. This is compounded by the lack of ground
truth in an online setting, and by the difficulty of anticipating and testing every eventuality.

Veracity causes streaming-specific issues, since it requires accurate real-time responses
without having seen all the data, and because the online setting leaves no time for separate
batch data cleansing. Also, streaming is often used in a distributed setting, where there can
be no global clock. Some streaming languages are explorations in handling uncertainty on
top of stream-relational algebra, but restricting stream operators to support retraction or
uncertainty propagation limits expressiveness and raises complexity. A more general solution
might use probabilistic programming to handle uncertainty in a principled way.

17441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

136 17441 – Big Stream Processing Systems

The goal is for streaming languages to help minimize compounding uncertainty by being
quality-aware and adaptive while remaining simple, expressive, and fast. This inherently
leads to multiple metrics (e.g., precision, recall, throughput, latency) and harder-to-quantify
objectives (simplicity, expressiveness). One can maximize one set of metrics while satisficing
a threshold on the others, or one can seek Pareto-optimal solutions.

Adoption is a challenge for stream processing languages: while there are many languages,
none have reached broad acceptance and use. The community should care about adoption of
streaming languages because it would drive adoption of streaming technologies in general. A
widely-adopted language is more attractive for students to learn, leading to a bigger pool
of skilled people to hire for companies. Furthermore, a widely-adopted language would
drive more mature libraries, tools, benchmarks, and optimizations. The lack of a dominant
language indicates that adoption is a difficult goal.

Streaming as a domain is young, fast-moving, and prone to vendor lock-in. At the
same time, not only is there no consensus on a streaming language, there is not even a
consensus on which language features are most important and which can be omitted to reduce
complexity. Furthermore, several recent streaming systems have a DSEL (domain-specific
embedded language), which tends to have less well-isolated semantics and more host-language
dependencies than a stand-alone DSL (domain-specific language).

The goal is for the community to agree upon one or a few languages that get widely
adopted. Metrics for language adoption include lines of code, as well as mentions in resumes,
job posting, courses, and support forums. Adoption can also be measured by the number of
systems that support a language, open-source and open-governance implementations, and
ultimately, an industry standard.

We hope this summary of our working group discussion helps guide future streaming-
language research in novel and impactful directions.

4.2 Working Group: Systems and Applications
Tilmann Rabl (TU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Tilmann Rabl

In this working group, participants discussed characteristics and open challenges of stream
processing systems. The discussions mainly focused on the topics state management, trans-
actions, and pushing computation to the edge.

State management – Modern streaming systems are stateful, which means they can
remember the state of the stream to some extent. A simple example is a counting operator
that counts the number of elements seen so far. While even simple state like this poses
several challenges in streaming setups (such as fault tolerance and consistency), many use
cases call for more advanced state management capabilities. An example is the combination
of streaming and batch data. This is for example required when combining the history of
a user with her current activity or when finding matching advertisement campaigns with
current activity a popular example of such a setup is modeled in the Yahoo! Streaming
Benchmark [2]. Today, most setups deal with such challenges by combining different systems
(e.g., a key value store for state and a streaming system for processing), however, it is
desirable to have both in a single system for consistency and manageability reasons.

State can be considered the equivalent of a table in a database system. As a result,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tilmann Rabl, Sherif Sakr, and Martin Hirzel 137

besides the combination of stream and state, several high level operations can be identified:
conversion of streams to tables (e.g., storing a stream), conversion of tables to streams (e.g.,
scanning a table), as well operations only on tables or streams (joins, filters, etc.). The
management of state opens the design space in between existing stream processing systems
and database systems, which has only been partially explored by current systems. In contrast
to database systems, stream systems typically operate in a reactive manner, i.e., they have
no control over the incoming data stream, specifically, they do not control and define the
consistency and order semantics in the stream. This requires advanced notions of time and
order as for example specified for streams in the dataflow model [1], for state and stream
this remains an open field of research.

Transactions
A further discussion topic where transactions in stream processing systems. The main

difference between traditional database transactions and stream processing transactions is
that in databases the computation moves and data stays (in the system), in stream processing
systems the computation stays and the data moves to the computation (and out again).

Considering state management, the form of transactions as applied in databases can
also be used in a stream processing system, if the state is managed in a transactional
way. However, the operations on streams themselves can be transactional and then we can
differentiate between single tuple transactions and multiple tuple transactions. For multiple
tuple transactions, the transaction can only commit when all tuples are consumed. The
tuples then have to pass the whole operator graph or at least the transactional subgraph.

The semantics of transactions on streams is currently still an open field of research.
By pushing computation to the edge of a network, stream processing can be highly

distributed and decentralized. This is very useful when preprocessing or filtering can be done
without a centralized view of the data. Especially, in setups with high communication cost or
slow connections (e.g., mobile connections), it makes sense to not send all data to a central
server, but distribute the computation. A logical first step is filtering, but aggregations
and even more complex operations can be pushed to the edge, if possible. Many modern
scenarios prohibit centralized data storage, which further encourages distributed setups with
early aggregations. Primary points of research are the declarativity for specifying highly
distributed data processing programs and the architecture of systems to support these use
cases.

Other topics discussed were ad hoc queries and graph stream processing. Most current
systems only discuss long running queries, but in many use cases (e.g., sports, automotive)
streams can be short lived as can be stream queries.

References
1 T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R. Lax,

S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The dataflow model: A
practical approach to balancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. Proceedings of the VLDB Endowment, 8:1792–1803, 2015.

2 S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu, K. Nus-
baum, K. Patil, B. Peng, and P. Poulosky. Benchmarking streaming computation engines:
Storm, flink and spark streaming. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 1789–1792, 2016.

17441

138 17441 – Big Stream Processing Systems

Participants

Pramod Bhatotia
University of Edinburgh, GB

Albert Bifet
Telecom ParisTech, FR

Michael H. Böhlen
Universität Zürich, CH

Angela Bonifati
University Claude Bernard –
Lyon, FR

Jean-Paul Calbimonte
HES-SO Valais – Sierre, CH

Paris Carbone
KTH Royal Institute of
Technology, SE

Emanuele Della Valle
Polytechnic University of
Milan, IT

Javier D. Fernández-García
Wirtschaftsuniversität Wien, AT

Ashish Gehani
SRI – Menlo Park, US

Manfred Hauswirth
TU Berlin, DE

Günter Hesse
Hasso-Plattner-Institut –
Potsdam, DE

Martin Hirzel
IBM TJ Watson Research Center
– Yorktown Heights, US

Ali Intizar
National University of Ireland –
Galway, IE

Asterios Katsifodimos
TU Delft, NL

Nikos Katsipoulakis
University of Pittsburgh, US

Henning Kropp
Hortonworks – München, DE

Danh Le Phuoc
TU Berlin, DE

Alessandro Margara
Polytechnic University of
Milan, IT

Gianmarco Morales
QCRI – Doha, QA

Christoph Quix
Fraunhofer FIT –
Sankt Augustin, DE

Tilmann Rabl
TU Berlin, DE

Sherif Sakr
KSAU-HS – Riyadh, SA

Kai-Uwe Sattler
TU Ilmenau, DE

Matthias J. Sax
Confluent Inc – Palo Alto, US

Martin Strohbach
AGT International –
Darmstadt, DE

Hong-Linh Truong
TU Wien, AT

Akrivi Vlachou
University of Thessaly –
Lamia, GR

Thomas Weise
Mountain View, US

Yongluan Zhou
University of Copenhagen, DK

	Executive Summary Martin Hirzel, Tilmann Rabl, and Sherif Sakr
	Table of Contents
	Overview of Talks
	Approximate data analytics systems Pramod Bhatotia
	Data Stream Mining Albert Bifet
	Analysis of Queries on Big Graphs Angela Bonifati
	Privacy Preserving, Peta-scale Stream Analytics for Domain-Experts Michael H. Böhlen
	Interconnecting the Web of Data Streams Jean-Paul Calbimonte
	Consistent Large-Scale Data Stream Processing Paris Carbone
	Tutorial: Data Stream Processing Systems Paris Carbone
	Cyber-Physical Social Systems for City-wide Infrastructures Javier David Fernández-García
	Scaling SPADE to ``Big Streams'' Ashish Gehani
	Benchmarking Enterprise Stream Processing Architectures Günter Hesse
	Sliding-Window Aggregation in Worst-Case Constant Time Martin Hirzel
	Tutorial: Stream Processing Languages Martin Hirzel
	Benchmarking Semantic Stream Processing Platforms for IoT Applications Ali Intizar
	Efficient evaluation of streaming queries comprising user-defined functions Asterios Katsifodimos
	Towards an effort for Adaptable Stream Processing Engines Nikos Katsipoulakis
	Druid as an Example of a Federated Streaming Data System Henning Kropp
	Autonomous Semantic Stream Processing Danh Le Phuoc
	Collaborative Distributed Processing Pipelines (CDPPs) Manfred Hauswirth
	FlowDB: Integrating Stream Processing and Consistent State Management Alessandro Margara
	Mining Big Data Streams – Better Algorithms or Faster Systems? Gianmarco Morales
	Data Streams in IoT Applications: Data Quality and Data Integration Christoph Quix
	Benchmarking Modern Streaming Systems Tilmann Rabl
	Tutorial: Benchmarking Tilmann Rabl
	Collaborative Benchmarking of Computer Systems Sherif Sakr
	Low Latency Processing of Transactional Data Streams Kai-Uwe Sattler
	Streams and Tables in Apache Kafka's Streams API Matthias J. Sax
	IoT Stream Processing Tutorial Martin Strohbach, Alexander Wiesmaier, and Arno Mittelbach
	Quantifying and Detecting Incidents in IoT Big Data Analytics Hong-Linh Truong
	Data Management of Big Spatio-temporal Data from Streaming and Archival Sources Akrivi Vlachou
	Stream Processing with Apache Apex Thomas Weise
	Lifetime-Based Memory Management in Distributed Data Processing Systems Yongluan Zhou

	Working groups
	Working Group: Languages and Abstractions Martin Hirzel
	Working Group: Systems and Applications Tilmann Rabl

	Participants

