
76 COMMUNICATIONS OF THE ACM | OCTOBER 2023 | VOL. 66 | NO. 10

research

 key insights
 ˽ Low-code minimizes the use of textual

programming languages and instead uses
alternatives such as visual or natural
languages.

 ˽ Progress in AI fuels progress in low-code
in proportion to the ambiguity of the low-
code technique.

 ˽ Domain-specific languages and the
model-view-controller pattern constitutes
a backbone and unifying principle across
low-code techniques.

L OW-CODE IS THE subject of much current enthusiasm
stirred by market research companies and confirmed
by vendors rushing to embrace the label.7,31 But what
low-code programming means is somewhat cryptic,
let alone how it works. Moreover, scientific literature
rarely uses the term. We can decode the term by
breaking it into its components. Programming means
developing computer programs, which comprise
instructions for a computer to execute. Traditionally,
programming means writing code in a textual
programming language, such as C, Java, or Python.
In contrast, low-code programming minimizes the
use of a textual programming language. Instead, it
aims to use alternative techniques closer to how users
naturally think about their task.

Users of low-code range from professional
developers to so-called citizen developers. A citizen
developer is an amateur programmer with little
professional programming education. Citizen

developers, having chosen a career dif-
ferent from programming, tend to have
more domain expertise. Low-code en-
ables domain experts to become citizen
developers. At the same time, low-code
platforms should also strive to make
pro-developers (professionals with an
education or career in software devel-
opment) more productive.

Whether used by a citizen developer
or a pro-developer, low-code program-
ming aims to save the time and tedium
of performing a task by hand.35 Further
motivation for individuals comes from
the joy of creating something useful,
thinking about tasks in a computation-
al way, and acquiring programming
skills that can advance their career.
Businesses may have their own motiva-
tion for adopting low-code platforms,
which can alleviate the shortage of pro-
developers, reduce mistakes of tedious
manual tasks, and multiply the time
savings from one individual’s low-code
program to their colleagues.31 Another
factor driving low-code is the rise of
cloud-based software as a service, pro-
viding both more interfaces to auto-
mate and a platform on which to deploy
automations.

A few concepts are closely related
to low-code programming. No-code
programming is more purist, with zero
handwritten code in a textual program-
ming language. End-user program-
ming (EUP) puts the emphasis on who
is doing the programming (the end-
user as citizen developer) rather than
on how they are not doing their pro-
gramming (not with textual code).6 This
term is common in the academic litera-

Low-Code
Programming
Models

DOI:10.1145/3587691

Low-code has the potential to empower
more people to automate tasks by creating
computer programs.

BY MARTIN HIRZEL

https://dx.doi.org/10.1145/3587691
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587691&domain=pdf&date_stamp=2023-09-22

OCTOBER 2023 | VOL. 66 | NO. 10 | COMMUNICATIONS OF THE ACM 77

I
M

A
G

E
R

Y
 F

R
O

M
 S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

ture and overlaps with low-code, but
does not preclude the use of a textual
programming language. Another gap
between EUP and low-code is the latter
aims to serve not just end users but also
pro-developers.7,31

Bock and Frank7 and Sahay et al.31
recently compared commercial low-
code platforms, and Barricelli et al. re-
cently mapped the EUP literature.6 In
contrast, this article bridges the gap
between low-code and the academic
literature and adds missing details and
perspective. Low-code encompasses
more specialized techniques, such as
visual programming languages (VPLs),
programming by demonstration (PBD),
programming by example (PBE), robot-
ic process automation (RPA), program-
ming by natural language (PBNL), and
others. Surveys on these techniques are
more specific and often dated.4,8,20,35 In

contrast, this article reviews recent lit-
erature across all these techniques.

Given that low-code offers citizen
developers a model to create computer
programs, this article explores low-
code from the perspective of program-
ming models. A programming model
is a set of abstractions that supports
developing computer programs. Pro-
gramming models can be low-code or
not, and they can be domain-specific or
general-purpose. Some programming
models are languages; for example,
Java is a general-purpose language and
SQL is domain-specific, and neither
is low-code. Scratch is a low-code pro-
gramming model for kids that is media-
centric,29 making it domain-specific.
The programming-model perspective
helps highlight common techniques
for writing, reading, and executing pro-
grams, and it helps relate low-code to

research into program synthesis and
domain-specific languages.

This article includes a deep-dive into
three prominent low-code techniques:
visual programming, programming by
demonstration, and programming by
natural language. The deep-dive focus-
es on fundamental building blocks and
a unifying framework common to all
three. The citations in this article cover
both seminal work and recent advanc-
es in low-code programming models,
for instance, based on artificial intelli-
gence. Moreover, this article aims to cut
through the buzz surrounding low-code
so as to expose the technical founda-
tions underneath. Hopefully, doing so
will foster better development of the
field through awareness of existing (al-
beit scattered) research, and will ulti-
mately lead to even more empowered
citizen developers.

78 COMMUNICATIONS OF THE ACM | OCTOBER 2023 | VOL. 66 | NO. 10

research

Problem Statement
If low-code is the solution, then what is
the problem? Given the term low-code,
it might seem the answer is obviously
code. Unfortunately, that answer is su-
perficial and nonconstructive. Defining
a thing solely by what it is not, as the
term low-code appears to do, causes
confusion. Consider two other recent
similarly named trends: NoSQL and
serverless. At the surface, one might
think NoSQL was mostly about reject-
ing SQL, but in fact, it was more about
flexible data and consistency models
than about the query language. Similar-
ly, serverless computing was not about
eliminating compute servers, but about
hiding them behind better abstractions.
Defining a new trend by rejecting an old
one grabs attention at the expense of be-
ing misleading. Just like serverless still
needs servers, low-code (and even no-
code!) still needs code.

The three terms—low-code, NoSQL,
and serverless—have one thing in com-
mon: a desire to avoid specific baggage
while preserving core value. In NoSQL,
the core value is durable and consistent
storage. In serverless, it is portable and
elastic compute. What then is the core
value that low-code aims to preserve?
This article argues it is computer pro-
gramming. Programming is to low-code
what computing is to serverless. Low-
code is about creating instructions for a
computer to execute or interpret. These
instructions form a computer program,
typically in a domain-specific language
(DSL). For instance, low-code is often
based on search-based program syn-
thesis, and synthesis usually targets a
DSL carefully crafted for the purpose.2
The program may not be exposed to the
user, but it is there.

One way to better understand the
problem statement behind low-code is
to look at who it is for. The top portion
of Figure 1 shows the spectrum of low-
code users. They range from citizen de-
velopers at one end to pro-developers at
the other, with intermediate stages here
dubbed semi developers. In this simpli-
fied view, users at the citizen developer
end of the spectrum tend to have the
most domain knowledge and users at
the pro-developer end have the most
programming expertise. Low-code can
enable citizen developers to self-serve
their programming needs instead of
depending on pro-developers. At the

same time, low-code can make pro-de-
velopers more productive, for example,
in a new domain. Finally, low-code
can break barriers between developers
across the spectrum and help them col-
laborate on common ground.

The middle portion of Figure 1
shows three representative low-code
techniques. Programming expertise in-
duces a Venn diagram over the users,
with the smallest subset being able to
use the largest range of programming
techniques. An edge between a set of us-
ers and a low-code technique indicates
the users write or read a program with
that technique. Specifically, all users
can use programming by demonstra-
tion and programming by natural lan-
guage (edges to the outermost set of
users encompassing citizen-, semi-, and
pro-developers). Only semi-developers
and pro-developers can readily use vi-
sual programming, though citizen de-
velopers may be easily trained to do so,
as evidenced by Scratch.29 And only pro-
developers are likely to directly use a
DSL. Therefore, while low-code typically
targets a DSL, that DSL may not be ex-
posed, or if it is, may only be exposed to
pro-developers. That is especially true
in the common case of a DSL that is em-
bedded17 in a general-purpose textual
programming language such as Python.

If the core value of low-code is to
create computer programs, what ex-
actly is it about created programs that
is deemed valuable? One way to shed
more light on this question is to look
at a seemingly opposing trend, namely
the as-code movement. The as-code
movement started with infrastructure
as code, which automates standing up
compute resources and the services
running on them from a source code
repository and a backup.18 Treating
this process as code can speed it up,
reduce mistakes, and facilitate testing.
Another instance of as-code is security
as code, where security policies, tem-
plates, and configuration files all live
in a source code repository.25 Treating
them as code lets them be versioned,
inspected by humans, and checked by
machines. To summarize, the as-code
movement sees value in programs
that are repeatable, tested, versioned,
human-readable, and machine-check-
able. These are also desirable proper-
ties for low-code programs.

When citizen developers use low-

Just like
serverless still
needs servers,
low-code
(and even
no-code!) still
needs code.

OCTOBER 2023 | VOL. 66 | NO. 10 | COMMUNICATIONS OF THE ACM 79

research

ranged differently for use with other
low-code techniques, such as spread-
sheets, rules, wizards, or templates.
Not all building blocks appear in all
techniques, but the following blocks
recur enough to warrant brief up-front
definitions:

 • code canvas: renders code, for ex-
ample, visually as a flow graph;

 • palette: offers components for
drag-and-drop selection;

 • text box: holds natural-language
text used for code search, description,
or generation;

 • player: has buttons for capture, re-
play, pause, or step;

 • stage: shows the effect of code ex-
ecution; and,

 • configuration pane: lets the user
customize components, for example,
via graphical controls such as check-
boxes or sliders, or textually by typing
small formulas.

Low-code techniques support not
just writing programs, but also reading
and executing them. A low-code system
can execute the program immediately
after it is written or save it for later,
and the user may choose to execute the
program multiple times, for example,
after input data changes. Low-code
techniques differ in which of the listed
building blocks are engaged to read,
write, or execute programs. Whereas
Figure 1 blurred the read/write/execute
distinction by using undirected edges,
the rest of this section explicates the
distinction by using directed edges and

code, it is typically to create a program
for a task they would otherwise do by
hand. So what tasks is low-code good
for? Generally speaking, low-code
helps if it shaves off more time from
a task than the time spent doing the
low-code programming. This is true
for tasks that are repetitive or time-
consuming. Of course, the equation
shifts when the program can be used
not just by the developer who created
it, but also by others, shaving time off
their tasks as well. In the extreme, pro-
developers create programs used by
millions. Low-code is most appropri-
ate when it saves time, but not enough
time to make professional coding eco-
nomically feasible. Low-code is suit-
able for tasks that are rule-based and
low on exceptions. And besides the
time savings, it can be even more ben-
eficial when the tedium of doing the
task by hand causes errors.

Techniques
Here, we take a deep-dive into three
representative techniques for low-code
programming: VPLs, PBD, and PBNL.
These three are a good set for the fol-
lowing reasons. Sahay et al.’s paper
declares low-code as synonymous with
just one technique, VPLs,31 but that
perspective seems too narrow. Barri-
celli et al. list 14 different techniques
for EUP,6 but they are not clearly sepa-
rated, and reviewing them all in detail
would get too long-winded. In the past,
the dominant low-code technique has
been spreadsheets.9 The three chosen
techniques instead align with present
and future trends: VPLs are central
to current commercial low-code plat-
forms;31 PBD is the backbone of RPA,
which often uses record-and-replay;35
and PBNL is poised to grow thanks to
advances in deep learning-based large
language models.11,33,39

Furthermore, the three techniques
are well-suited for citizen developers
by drawing upon universal skills: VPLs
draw upon seeing, PBD draws upon the
ability to use a computer application,
and PBNL draws upon speaking. In
fact, low-code can offer an alternative
modality when some other approach
is impeded, such as using speech in-
terfaces when a user’s hands or eyes
are unavailable. Finally, VPLs, PBD,
and PBNL are sufficient to span a set
of building blocks that can also be ar-

colors (orange for read, dark blue for
write, and purple for execute).

Visual programming languages. The
user drags visual components from a pal-
ette to a canvas, connects them, and con-
figures them.

Description. Visual programming
languages let users write programs
by directly manipulating their visual
representation. There is a plethora of
possible visual representations,8 often
inspired by domain notation, such as
electrical circuit diagrams. Two promi-
nent domain-independent visual rep-
resentations are boxes-and-arrows
(for example, BPMN27) or interlocking
puzzle pieces (for example, Scratch29).
Here, boxes or puzzle pieces represent
instructions in the program, and ar-
rows between boxes or the interlock of
pieces represent how data and control
flows between instructions.

Despite the diversity in visual lan-
guages, their programming environ-
ments tend to comprise similar build-
ing blocks, as depicted in Figure 2.
The central building block is the code
canvas, where the user can both read
(orange arrow from canvas to eye) and
write (dark blue arrow from hand to
canvas) the program. Writing the pro-
gram also involves dragging compo-
nents from the palette to the canvas
and possibly configuring them in a
separate configuration pane. The pro-
gramming environment also often in-
cludes a stage, which visually shows a
program execution, ideally live.34 For

Figure 1. Low-code users and techniques.

Citizen Developer Semi-Developer
Professional

Developer

Programming by
Demonstration

Programming by
Natural Language

Visual Programming
Language

Domain-Specific Language

General-Purpose Programming Language

80 COMMUNICATIONS OF THE ACM | OCTOBER 2023 | VOL. 66 | NO. 10

research

programming languages is they are
not always self-explanatory; that is why
Figure 1 connects them to semi-devel-
opers. The mitigation for this need-to-
learn is user education, and for some
VPLs, education is a primary purpose.29
The visual notation can take up a lot of
screen real estate; the mitigation is to
elide detail, for example, by requiring a
configuration pane or via modular lan-
guage constructs.3,26 Even the palette
can get too full, hindering discoverabil-
ity, which can be mitigated by search fa-
cilities. A drawback of visual languages
compared to textual languages is they
tend to be co-dependent on their visual
programming environment, hindering
the use of basic tools such as diffing
or search, or of third-party tools such
as linters or code generators. This can
be mitigated by backing the visual lan-
guage with a textual domain-specific
language.37

Literature. Some seminal VPLs in-
clude BPMN-on-BPEL for modeling
and executing business processes27
and the Scratch language for teaching
kids programming.29 Boshernitsan
and Downes chronicle early VPLs and
categorize them into purely visual vs.
hybrid (mixed with text), and complete
(sufficient procedural abstraction and
data abstraction to be self-hosting) or
not.8 Today, VPLs are central to com-
mercial low-code platforms such as Ap-
pian, Mendix, and OutSystems.31

Other papers address VPL imple-
mentation approaches, such as meta-
tools (tool used to implement other
tools) and the model-view-controller
(MVC) pattern, which lets users manip-
ulate the same model through multiple
synchronized views. VisPro is a meta-
tool for creating visual programming
environments.40 VisPro advocates for
a coordinated set of visual and tex-
tual languages, using MVC to expose
the same program (model) via mul-
tiple languages (views). More recently,
Blockly is a meta-tool for creating VPLs
with interlocking puzzle pieces28 such
as those in Scratch. Some VPLs target
pro-developers and are embedded in
professional programming environ-
ments or languages. Projectional ed-
iting, such as in MPS,37 doubles down
on the MVC paradigm, where even the
textual language is projected into a
view precluding syntax errors. More re-
cent work has demonstrated VPLs as li-

domain expert,8 or in visual builders
for graphical user interfaces.24 Another
strength is that, in contrast to PBD or
PBNL, VPLs are usually unambiguous,
thus increasing programmer control
and reducing mistakes. Finally, com-
pared to textual programming lan-
guages, visual languages can rule out
syntax errors37 and even simple type er-
rors29 by construction.

In the context of low-code program-
ming, the main weakness of visual

example, in Scratch, the stage shows
sprites in a virtual world. Besides mak-
ing the environment more engaging,
the stage is also crucial for program
understanding and debugging. To fa-
cilitate this, the stage is usually tightly
connected to the canvas, helping the
user navigate back and forth.

Strengths, weaknesses, and mitiga-
tions. One strength of VPLs is they tend
to be easy to read, especially when re-
using notation already familiar to the

Figure 2. Visual programming languages.

Code canvas

Stage

Config.
pane

P
al

et
te

Figure 3. Programming by demonstration.

Code canvas

Stage
Player

Config.
pane

Figure 4. Programming by natural language.

Code canvas

Text canvas

Stage

OCTOBER 2023 | VOL. 66 | NO. 10 | COMMUNICATIONS OF THE ACM 81

research

iar with from their day-to-day work.21
This makes PBD well suited for citizen
developers, as there is no indirection
between programming and execution.
Furthermore, a demonstration is more
concrete than a program in a different
paradigm, since it works on specific
values and has a straight-line flow of
control and data.

Unfortunately, being so concrete is
also PBD’s main weakness: to turn a
demonstration into a program, it must
be generalized, and automatic gener-
alization may not capture the user’s
intent.14 Mitigations include hand-con-
figuration21 or multishot demonstra-
tion.15 PBD can be brittle with respect
to the graphical user interface of the
application on stage, especially when
that changes; mitigations include heu-
ristics and specialized recorders that
can map perception to application-
level concepts.32 Generalization can
also overshoot, allowing a program to
plow ahead even in unforeseen circum-
stances.16 This can be mitigated by pro-
viding guardrails, such as an attended
execution mode that asks the user to
confirm before certain actions. Finally,
PBD can result in programs that are
difficult to understand because they
include spurious steps or are too fine-
grained, which is of course a problem
in low-code programming.10 This can
be mitigated by pruning and by discov-
ering macro-steps.

Literature. A good example of a
PBD system is CoScripter, where the
stage is a Web browser and the code
canvas displays the program in natu-
ral language.21 The CoScripter paper
describes interviews that informed its
design, as well as experiences from
real-world usage in a business setting.
In Rousillon, the stage is also a Web
browser and the canvas displays the
program in a VPL, fusing sequences
of several low-level steps into a single
puzzle piece.10 In VASTA, the stage is
the display of a mobile phone, and
the system uses machine learning
to reverse-engineer screenshots into
user interface elements.32 In DIYA, the
stage is a Web browser and users cus-
tomize the program during recording
via voice input.14 PBD is used in com-
mercial robotic process automation
products (such as UIPath, Automation
Anywhere, and BluePrism) that let a
human demonstrate a process on the

braries extending textual languages. A
livelit is a user-defined VPL widget that
can be used in place of a textual liter-
al,26 and Andersen et al. let users imple-
ment VPL widgets for literals, patterns,
and templates.3

Programming by demonstration.
The user demonstrates the behavior on a
canvas, with some configuration during
or after recording.

Description. In PBD, the user dem-
onstrates how to perform a task by
hand via the mouse and keyboard, and
the PBD system records a program that
can perform the same task automati-
cally. As shown in Figure 3, the dem-
onstration happens on a stage, which
may be a specific application like a
spreadsheet, or a Web browser visit-
ing a variety of sites and apps, or even
a general computer desktop or smart-
phone screen. Ideally, the recorded
program abstracts from perceptions
to a symbolic representation, for in-
stance, by mapping pixel coordinates
to a user-interface widget, or several
keystrokes to a text string. Besides the
stage, most PBD systems have a player
with buttons to record and replay, plus
often additional buttons such as pause
or step (reminiscent of interactive de-
buggers).

The program is most useful if ex-
ecuting it does not yield the same be-
havior as the initial demonstration, but
rather, generalizes to different data.
For example, a program for ordering
a taxi to any new location is more gen-
eral and more useful than a program
for ordering a taxi to only a single hard-
coded location. Generalizing typically
requires identifying variables or pa-
rameters, and may even entail adding
conditionals, loops, or function calls.
Unfortunately, a single demonstration
is an inherently ambiguous specifica-
tion for such a more general program.
Therefore, PBD systems often provide a
configuration pane that allows users to
disambiguate the generalization either
during or after demonstration. Some
PBD systems also have a code canvas
that renders the recorded program for
the user to read, for example, visually
or in natural language.

Strengths, weaknesses, and mitiga-
tions. The main strength of program-
ming by demonstration is that the user
can work directly with the software
applications they are already famil-

To turn a
demonstration
into a program,
it must be
generalized,
and automatic
generalization
may not capture
user’s intent.

82 COMMUNICATIONS OF THE ACM | OCTOBER 2023 | VOL. 66 | NO. 10

research

but unfortunately, those programs are
often wrong.4 Natural language is am-
biguous, since humans are often vague
and tend to assume common ground
and omit context. On top of that, nat-
ural language processing (NLP) tech-
nologies are imperfect. The optional
code canvas and stage can mitigate
this weakness, by showing the user the
synthesized program or its effect, thus
giving them a chance to correct it. An-
other mitigation is to encourage users
to keep their utterances short and not
take advantage of the full expressive-
ness of natural language, since simpler
programs are easier to get right.22 Fur-
thermore, some PBNL systems support
hand-editing the program.

Another strength of PBNL is its ex-
pressiveness: natural language can
express virtually anything humans
want to communicate. In theory, PBNL
restricts neither the sophistication
nor the domains of programs. On the
flip-side, PBNL systems often require
an aligned corpus of utterances and
programs to train NLP models, and
obtaining such a corpus is expensive.
Mitigating this is an active research
topic in the machine-learning research
community.33,38

Literature. As an interdisciplinary
field of research, PBNL is best illumi-
nated through multiple surveys. An-
droutsopoulos et al. surveyed natural-
language interfaces to databases, a
prominent form of PBNL going back
to the 1960s.4 A common approach
is to parse a natural-language utter-
ance into a tree and then map that tree
to a database query. Kuhn surveyed
controlled natural languages (CNLs),
which restrict inputs to be unambigu-
ous while preserving some natural
properties.20 Compared to unrestricted
natural language, CNLs may make it
harder for citizen developers to write
programs but may make it easier to
write correct programs. Allamanis et
al. surveyed machine learning for code,
arguing that code has a “naturalness”
that makes it possible to adapt various
NLP technologies to work on code.1
The survey covers some code-generat-
ing models relevant to PBNL.

The most successful NLP technolo-
gy applied to PBNL is semantic parsers,
which are machine-learning models
that translate from natural language to
an abstract syntax tree (AST) of a pro-

existing software and then refer to the
automatic replay engine as a robot.35

PBD is closely related to PBE, since
a demonstration is an elaborate exam-
ple. FlashFill is a seminal PBE system
that uses example input and output
columns in a spreadsheet to synthesize
a program for transforming inputs to
outputs.15 Both PBD and PBE are based
on program synthesis.2 Recent work
has harnessed novel machine-learn-
ing techniques for program synthesis,
such as learned search strategies in
DeepCoder5 and learned libraries in
DreamCoder.13

PBD can be profitably combined
with other low-code techniques. The
play-in/play-out approach is a PBD
system codesigned with its own VPL
based on sequence diagrams.16 And
SwaggerBot is a PBD system embedded
in a natural-language conversational
agent, enabling a form of PBNL.36

Programming by natural language.
The user enters natural language text via
keyboard or voice, and the system synthe-
sizes a program.

Description. In this low-code tech-
nique, the user enters text in natural
language, either by typing on the key-
board or via speech-to-text. Figure 4
indicates these two possibilities via
blue arrows from the user’s hand or
mouth to the text canvas. The PBNL
system translates the user’s text, or ut-
terance, to a program. The system can
optionally render the program on a
code canvas for the user to read. This
rendering might use a VPL, or it might
use a controlled natural language20 for
a disambiguated version of the user’s
utterance. The system can also option-
ally show the effect of the program’s ex-
ecution on a stage. For example, if the
program is a query in a spreadsheet,
the spreadsheet is the stage, and the
result can be shown as a new table.

Strengths, weaknesses, and mitiga-
tions. The main strength of PBNL is
that it is not just low-code, but more
generally, low on demands during pro-
gramming. As shown in Figure 4, its
programming environment has only
three building blocks (text canvas, code
canvas, and stage), all optional. That
means PBNL in principle even works in
circumstances where the user’s hands
and eyes are otherwise occupied.

PBNL makes it particularly easy for
citizen developers to create programs,

A strength of
programming by
natural language is
its expressiveness:
natural language
can express
virtually anything
humans want to
communicate.

OCTOBER 2023 | VOL. 66 | NO. 10 | COMMUNICATIONS OF THE ACM 83

research

grow along with relevant advances in AI.
AI is also prominent in PBD, character-
ized in the table as medium ambiguity.
For example, DeepCoder shows the in-
terplay between program synthesis for
defining a space of possible programs
and checking whether a given program
is correct, and AI for guiding the search
through that space.5 As another exam-
ple, VASTA uses speech recognition,
object recognition, and optical charac-
ter recognition to better understand a
user’s demonstration of a task.32

Communicating with humans and
machines. Pro-developers use code in
textual programming languages to
communicate with a computer, telling
it what to do. In addition, developers
can also use programming languages
to communicate with each other or with
their own future self. A low-level pro-
gramming language such as C gives de-
velopers more control of the computer,
whereas a high-level language such as
Python arguably makes communica-
tion among humans more effective.
Similarly, low-code programs can serve
both to communicate instructions to a
computer and to communicate among
low-code users. Being even more high-
level than, say, Python, low-code can
serve as a lingua franca to help citizen
developers and pro-developers commu-
nicate more effectively with each other.
For instance, a citizen developer might
use PBD to communicate a desired be-
havior to a pro-developer to flesh out.16
Conversely, a pro-developer might use
PBNL or a VPL to communicate a pro-
posed behavior to a domain expert for
explanation or approval.21,27

Domain-specific languages for low-
code. All three low-code techniques
noted earlier are intrinsically related to
DSLs: most VPLs are DSLs (for example,
Scratch29), and both programming by
demonstration and programming by
natural language usually target DSLs
(DIYA targets its co-designed Thing-
Talk 2.0 DSL14). Mernik et al. list further

PBNL. On the other hand, there is little
difference in the Read and Execute col-
umns: users read programs on a code
canvas (if provided), and watch them
executing on the stage (if visible). That
hints at an opportunity for reuse across
tools for different techniques.

A core problem with low-code pro-
gramming is ambiguity. While visual
programming languages can be rigor-
ous and unambiguous, there is ambi-
guity in how to generalize from a dem-
onstration to a program that works in
different situations, and natural lan-
guages are inherently ambiguous as
well. More ambiguous techniques may
only work reliably on small and simple
problems. Systems for PBD and PBNL
must guess at the user’s intent and are
likely to guess wrong when programs
get complicated. This motivates offer-
ing users an option to read or even cor-
rect programs or their executions.

A core goal of low-code program-
ming is to reduce the need to learn a
programming language. Citizen devel-
opers can demonstrate a program or
describe it in natural language without
having been taught how to do so. Visual
programming is often less self-explan-
atory, which is why Figure 1 associates
it more with semi-developers. On the
other hand, depending on the user’s
attitude, the need-to-learn can also be
good, since it grows computational
thinking skills.

Artificial intelligence for low-code.
Does the ongoing rapid progress in AI
fuel progress in low-code? This article
argues that yes, it does, in proportion
to the ambiguity of the low-code tech-
nique. Out of the three techniques in the
table, AI is most prominent for PBNL,
which is also the most ambiguous.
PBNL can hardly avoid AI except by us-
ing a controlled natural language,20 but
that would make it feel more like code.
Currently a rising AI approach for PBNL
is to use large language models with
code generation.11,33 PBNL will likely

gram. For instance, SILT learns rule-
based semantic parsers that have been
demonstrated for programs that coach
robotic soccer teams or for programs
that query geographic databases.19 The
Overnight paper addresses the prob-
lem of obtaining an aligned corpus for
training a semantic parser via synthet-
ic data generation and crowdsourced
paraphrasing.38 Pumice tackles the
ambiguity of natural language by a dia-
logue, where the system prompts for
clarification which the user can pro-
vide via natural language or demon-
stration.22 And Shin et al. show how to
coax a pretrained large language mod-
el into doing semantic parsing without
requiring fine-tuning.33

Another approach to PBNL is pro-
gram synthesis, which typically search-
es a space of possible programs.2 Desai
et al. describe a meta-synthesizer that,
given a DSL grammar and an aligned
corpus, creates a synthesizer from nat-
ural language to programs in the DSL.12
PBNL is not limited to domain-specific
languages for citizen developers. Yin
and Neubig describe a semantic pars-
er that uses deep learning to encode a
sequence of natural-language tokens,
then decodes that into a Python AST.39
Codex is a pre-trained large language
model for natural language first fine-
tuned on unlabeled code, then fine-
tuned again on an aligned corpus of
utterances and programs.11

Perspectives
While the previous discussion covered
three low-code techniques in depth,
here we cover cross-cutting topics be-
yond any single technique. The accom-
panying table compares the techniques
discussed earlier. The Activity columns
indicate how each technique supports
the user in writing, reading, and execut-
ing programs. The main difference is in
the Write column: users write programs
mainly on the code canvas for VPLs,
the stage for PBD, and a text canvas in

Comparing low-code techniques.

Technique
Activity

Ambiguity Need to learn
Write Read Execute

Visual programming languages code canvas, palette, config. pane code canvas stage low medium

Programming by demonstration stage, player, config. pane code canvas player, stage medium low

Programming by natural language text canvas code canvas stage high low

84 COMMUNICATIONS OF THE ACM | OCTOBER 2023 | VOL. 66 | NO. 10

research

where users can write programs in mul-
tiple ways. Such combinations can com-
pensate for weaknesses of techniques.
For example, in Rousillon, the user first
writes a program by demonstrating
how to scrape data from web pages;10
since one weakness of PBD is ambigu-
ity, Rousillon lets the user read the re-
sulting program in a scratch-like VPL.10
Pumice combines PBD with PBNL: the
user first writes a program via natural
language; since one weakness of PBNL
is ambiguity, Pumice next lets the user
clarify with PBD.22

Meta-tools and meta-circularity. A
meta-tool for low-code is a tool used to
implement low-code tools. In tradition-
al programming languages, meta-tools
(such as parser generators) have long
been an essential part of the tool-writ-
er’s repertoire. Similarly, meta-tools for
low-code can speed up the development
of low-code tools by automating well-
known but tedious pieces. Thus, meta-
tools make it easier to build several tools
or variants, for instance, to experiment
with the user experience. There are ex-
amples of meta-tools for all three low-
code techniques discussed previously.
Blockly28 is a tool for creating VPLs that
look similar to Scratch; DreamCoder13
is a tool for learning a library of reusable
components along with a neural search
policy for PBE; and Overnight38 is a tool
for building semantic parsers for PBNL
with synthetic training data.

A meta-circular tool for low-code is
a meta-tool for low-code that is itself
a low-code tool. Not all meta-tools are
metacircular tools, as that requires
them to be powerful enough for serious
software development. Supporting all
that power can compromise the tool’s
low-code nature: complex features can
get in the way of learning easy ones. On
the positive side, meta-circular tools
can democratize the creation of low-
code tools themselves. Furthermore,
tool developers who use their own tools
may empathize more with their users’
needs. Examples for meta-circular low-
code tools include VisPRO40 and Racket3
(both for VPLs).

Low-code foundation. In addition to
meta-tools, are there other reusable
modules that make it easier to build
new low-code tools? The beginning of
the Techniques section listed several
reusable building blocks for low-code
programming interfaces: code can-

is Lightweight Modular Staging, which
uses operator overloading and dynamic
compilation, such as in Scala.30

Model view controller. The current
state-of-the-art VPLs and associated
meta-tools are based on the MVC pat-
tern.28,40 And in PBD or PBNL, even
though the user does not use a code
canvas to write a program, the sys-
tem may optionally provide one for
reading it, again using MVC. Figure
5 illustrates MVC with a superset of
the components from each low-code
technique. Low-code programming
tools provide one or more views of
the program. Some of these views are
read-only, while others are read-write
views. When multiple views are pres-
ent, the system keeps them in sync
with a single joint model, and through
that, with each other. Edits in one view
are projected live to all other views.
The model is a program in a DSL. Op-
tionally, the system may even expose
the textual DSL as another view, for in-
stance, in a structure editor.37 Besides
the model and the view, the third part
of the MVC pattern is the controller,
which, for low-code, can contain a
player and/or a configuration pane.

Combining multiple low-code tech-
niques. When users write a program by
demonstration or by natural language,
the system may let them read it on a
code canvas. And once a system lets us-
ers read programs on a code canvas, a
logical next step is to also let them write
programs there, such as, to correct mis-
takes from generalization or from natu-
ral language processing. This yields a
combination of low-code techniques,

benefits of DSLs: they facilitate program
analysis, verification, optimization,
parallelization, and transformation
(AVOPT).23

While reviewing the low-code litera-
ture reveals a close tie to DSLs, those
DSLs are not always exposed to the user.
For instance, the DSL may manifest as a
proprietary file format or as an undocu-
mented internal representation. If the
DSL is exposed, users can more easily
read, test, and audit programs, version
them and store them in a shared reposi-
tory, and manipulate them with tools
for program transformation or genera-
tion. Also, an exposed DSL is less locked
into a specific programming environ-
ment or its vendor. When exposed, the
DSL should be designed for humans,
possibly based on interviews and user
studies as role-modeled by Leshed et
al.21 On the other hand, a DSL that is not
exposed will be shaped by different fac-
tors, such as the ease of enumerating
valid programs, which can be improved
by breaking symmetries in the search
space.13

DSLs (including DSLs for low-code)
may be embedded in a general-purpose
language. Compared to a stand-alone
DSL, an embedded DSL is often easier
to implement (for example, due to not
requiring a custom parser) and easier
to use (due to syntax highlighting and
auto-completion tools of the host lan-
guage). The approach to implementing
an embedded DSL depends on the facil-
ities of the host language. One approach
is Pure Embedding, which uses higher-
order functions and lazy evaluation,
such as in Haskell.17 Another example

Figure 5. Model-view-controller for low-code.

Views/Projections

Stage

Domain-specific
language

Code canvas (visual)

Controller

Player

Configuration pane

Code canvas (textual)

Model

OCTOBER 2023 | VOL. 66 | NO. 10 | COMMUNICATIONS OF THE ACM 85

research

1719–1728; https://doi.org/10.1145/1357054.1357323
22. Li, T.J. et al. PUMICE: A multi-modal agent that

learns concepts and conditionals from natural
language and demonstrations. In Proceedings of
2019 Symp. User Interface Software and Technology.
577–589; https://doi.org/10.1145/3332165.3347899

23. Mernik, M. et al. When and how to develop
domain-specific languages. ACM Computing
Surveys 37, 4 (2005), 316–344; https://doi.
org/10.1145/1118890.1118892.

24. Myers, B. et al. Past, present, and future of user
interface software tools. Trans. Computer-
Human Interaction (Mar. 2000), 3–28; https://doi.
org/10.1145/344949.34495

25. Myrbakken, H., and Colomo-Palacios, R. DevSecOps:
A multivocal literature review. Software Process
Improvement and Capability Determination (2017),
17–29. https://doi.org/10.1007/978-3-319-67383-7_2.

26. Omar, C. et al. Filling Typed Holes with Live GUIs. In
Proceedings of 2021 Conf. Programming Language
Design and Implementation. 511–525; https://doi.
org/10.1145/3453483.3454059

27. Ouyang, C. From BPMN process models to BPEL Web
services. In Proceedings of Intern. Conf. Web Services.
(2006); https://doi.org/10.1109/ICWS.2006.67

28. Pasternak, E. et al. Tips for creating a block
language with Blockly. In Proceedings of Blocks and
Beyond Workshop (2017); https://doi.org/10.1109/
BLOCKS.2017.8120404.

29. Resnick, M. et al. Scratch: Programming for all.
Commun. ACM 52, 11 (Nov.2009), 60–67; https://doi.
org/10.1145/1592761.1592779.

30. Rompf, T., and Odersky, M. Lightweight modular
staging: A pragmatic approach to runtime
code generation and compiled DSLs. Commun.
ACM 55, 6 (June 2012), 121–130; https://doi.
org/10.1145/2184319.2184345.

31. Sahay, A. et al. Supporting the understanding and
comparison of low-code development platforms.
In Proceedings of Euromicro 2020 Conf. Software
Engineering and Advanced Applications. 71–178;
https://doi.org/10.1109/SEAA51224.2020.00036

32. Sereshkeh, A.R. et al. VASTA: A vision and language-
assisted smartphone task automation system. In
Proceedings of 2021 Conf. Intelligent User Interfaces.
22-32; https://doi.org/10.1145/3377325.3377515

33. Shin, R. Constrained language models yield few-shot
semantic parsers. In Proceedings of 2021 Conf.
Empirical Methods in Natural Language Processing, 7,
699–7715; https://doi.org/10.18653/v1/2021.emnlp-
main.608

34. Tanimoto, S.L. A perspective on the evolution of live
programming. In Proceedings of Intern. Workshop
on Live Programming. (2013), 31–34; https://doi.
org/10.1109/LIVE.2013.6617346

35. van der Aalst, W.M. et al. Robotic process automation.
Business Spsampsps Information Systems Eng. 60,
(2018), 269–272. https://doi.org/10.1007/s12599018-
0542-4.

36. Vaziri, M. et al. Generating Chat Bots from Web API
Specifications. In Proceedings of Symp. New Ideas,
New Paradigms, and Reflections on Programming
and Software. (2017), 44–57; http://doi.acm.
org/10.1145/3133850.3133864

37. Voelter, M., and Lisson, S. Supporting diverse notations
in MPS’ projectional editor. In Proceedings of
Workshop on the Globalization of Modeling Languages.
(2014), 7–16; https://hal.inria.fr/hal-01074602/file/
GEMOC2014-complete.pdf#page=13

38. Wang, Y. et al. Building a semantic parser overnight.
In Proceedings of the Annual Meeting of the Assoc. for
Computational Linguistics. (2015), 1332–1342; https://
www.aclweb.org/anthology/P15–1129.pdf

39. Yin, P., and Neubig, G. A syntactic neural model for
general-purpose code generation. In Proceedings of
the Annual Meeting of the Assoc. for Computational
Linguistics. (2017), 440–450; http://dx.doi.
org/10.18653/v1/P17-1041

40. Zhang, K. et al. Design, construction, and application
of a generic visual language generation environment.
IEEE Trans Softw Eng. 27, 4 (2001), 289–307; https://
doi.org/10.1109/32.917521.

Martin Hirzel is a research staff member and manager at
IBM Research, Yorktown Heights, NY, USA.

users and discusses common build-
ing blocks, strengths, and weaknesses.
This article argues that domain-spe-
cific languages and the model-view-
controller pattern constitute a com-
mon backbone and unifying principle
across low-code techniques.

References
1. Allamanis, M. et al. A survey of machine learning

for big code and naturalness. ACM Computing
Surveys 51, 4 (July 2018), 81:1–81:37; https://doi.
org/10.1145/3212695

2. Alur, R. et al. Search-based program synthesis.
Commun. ACM 61, 11 (Nov. 2018), 84–93; https://doi.
org/10.1145/3208071.

3. Andersen, L. et al. Adding interactive visual syntax to
textual code. In Proceedings of 2020 Conf. Object-
Oriented Programming, Systems, Languages, and
Applications; https://doi.org/10.1145/3428290.

4. Androutsopoulos, I. et al. Natural language
interfaces to databases—An introduction. Natural
Language Engineering 1, 1 (1995), 29–81; https://doi.
org/10.1017/S135132490000005X.

5. Balog, M. et al. DeepCoder: Learning to write
programs. In Proceedings of 2017 Intern. Conf.
Learning Representations; https://openreview.net/
forum?id=ByldLrqlx.

6. Barricelli, B.R. et al. End-user development, end-user
programming and end-user software engineering: A
systematic mapping study. J. Systems and Software
149, (2019), 101–137; https://doi.org/10.1016/j.
jss.2018.11.041.

7. Bock, A.C., and Frank, U. Low-code platform. Business
& Information Systems Engineering 63, (2021), 733–
740; https://doi.org/10.1007/s12599-021-00726-8.

8. Boshernitsan, M., and Downes, M. Visual Programming
Languages: A Survey. Technical Report UCB/CSD-04-
1368, 2004, UC Berkeley; https://bit.ly/3P0SaX5

9. Burnett, M. et al. End-user software engineering.
Commun. ACM 47, 9 (Sept. 2004), 53–58; https://doi.
org/10.1145/1015864.1015889.

10. Chasins, S. et al. Rousillon: Scraping distributed
hierarchical Web data. In Proceedings of 2018 Symp.
User Interface Software and Technology. 963–975;
https://doi.org/10.1145/3242587.3242661

11. Chen, M. Evaluating large language models trained on
code, (2021); https://arxiv.org/abs/2107.03374

12. Desai, A. Program synthesis using natural language.
In Proceedings of 2016 Intern. Conf. Softw. Eng.,
345–356; https://doi.org/10.1145/2884781.2884786

13. Ellis, K. DreamCoder: Bootstrapping inductive
program synthesis with wake-sleep library learning.
In Proceedings of 2021 Conf. Programming Language
Design and Implementation. 835–850; https://doi.
org/10.1145/3453483.3454080

14. Fischer, M.H. et al. DIY assistant: A multi-modal
end-user programmable virtual assistant. In
Proceedings of 2021 Conf. Programming Language
Design and Implementation. 312–327; https://doi.
org/10.1145/3453483.3454046

15. Gulwani, S. Automating string processing in
spreadsheets using input-output examples.
In Proceedings of 2011 Symp. Principles of
Programming Languages. 317–330; https://doi.
org/10.1145/1926385.1926423

16. Harel, D., and Marelly, R. Specifying and executing
behavioral requirements: The play-in/play-out
approach. Software and Systems Modeling 2, (2003),
82–107; https://doi.org/10.1007/s10270-002-0015-5.

17. Hudak, P. Modular domain specific languages
and tools. In Proceedings of 1998 Intern. Conf.
Software Reuse. 134–142; https://doi.org/10.1109/
ICSR.1998.685738

18. Jacob, A. Infrastructure as code. Web Operations:
Keeping the Data on Time. J. Allspaw, and J. Robbins,
(eds). O’Reilly, Chapter 5, (2010), 65–80.

19. Kate, R.J. et al. Learning to transform natural to
formal languages. In Proceedings of 2005 Conf.
Artificial Intelligence. 1062–106; http://www.aaai.org/
Library/AAAI/2005/aaai05-168.php

20. Kuhn, T. A survey and classification of controlled
natural languages. Computational Linguistics 40, 1
(2014), 121–170; https://bit.ly/42t3JsY.

21. Leshed, G. et al. CoScripter: Automating and sharing
kow-to knowledge in the enterprise. In Proceedings
of 2008 Conf. Human Factors in Computing Systems,

vas, palette, text box, player, stage, and
configuration pane. Besides making
it easier to create low-code tools, such
reuse can also give different tools a
more uniform look-and-feel, thus re-
ducing the need-to-learn. In the case
of multiple low-code tools for the same
domain, reusing the same domain-
specific language makes them more
interoperable. Of course, low-code
tools in different domains will require
different DSLs, but they may still be
able to reuse some sublanguage, such
as expressions or formulas with basic
arithmetic and logical operators and
a function library. There are also AI
components that can be reused across
low-code tools, such as speech recogni-
tion modules, a search-based program
synthesis engine, semantic parsers, or
language models.

End-user software engineering. Most
of the discussion on low-code program-
ming focuses on writing a program:
low-code enables citizen developers
to rapidly create a prototype. But what
happens over time when these pro-
grams stick around, get used in new
circumstances that the developer did
not foresee, get modified or general-
ized, and proliferate? At that point, us-
ers need end-user software engineering
(EUSE) for quality control, for instance,
by showing test coverage, letting users
add assertions, and helping them local-
ize faults directly in their low-code pro-
gramming environment.9 Citizen devel-
opers often struggle with anticipating
exceptional contexts for their programs;
Pumice is a low-code tool that lets users
extend programs with new branches
when the unforeseen happens.22 An-
other way to support EUSE is to expose
the DSL, which makes it easier to adopt
established software development
workflows and the associated tools
(such as version-controlled source code
repositories, regression tests, or issue
trackers) for low-code. Those tools also
facilitate collaboration between citizen
developers and professional software
engineers.

Conclusion
This article reviews research relevant
to low-code programming models
with a focus on visual programming,
programming by demonstration, and
programming by natural language. It
maps low-code techniques to target

This work is licensed under a
Creative Commons Attribution

International 4.0 License.

