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 key insights
 ˽ Low-code minimizes the use of textual 

programming languages and instead uses 
alternatives such as visual or natural 
languages.

 ˽ Progress in AI fuels progress in low-code 
in proportion to the ambiguity of the low-
code technique.

 ˽ Domain-specific languages and the 
model-view-controller pattern constitutes 
a backbone and unifying principle across 
low-code techniques.

L OW-CODE IS  THE subject of much current enthusiasm 
stirred by market research companies and confirmed 
by vendors rushing to embrace the label.7,31 But what 
low-code programming means is somewhat cryptic, 
let alone how it works. Moreover, scientific literature 
rarely uses the term. We can decode the term by 
breaking it into its components. Programming means 
developing computer programs, which comprise 
instructions for a computer to execute. Traditionally, 
programming means writing code in a textual 
programming language, such as C, Java, or Python. 
In contrast, low-code programming minimizes the 
use of a textual programming language. Instead, it 
aims to use alternative techniques closer to how users 
naturally think about their task.

Users of low-code range from professional 
developers to so-called citizen developers. A citizen 
developer is an amateur programmer with little 
professional programming education. Citizen 

developers, having chosen a career dif-
ferent from programming, tend to have 
more domain expertise. Low-code en-
ables domain experts to become citizen 
developers. At the same time, low-code 
platforms should also strive to make 
pro-developers (professionals with an 
education or career in software devel-
opment) more productive.

Whether used by a citizen developer 
or a pro-developer, low-code program-
ming aims to save the time and tedium 
of performing a task by hand.35 Further 
motivation for individuals comes from 
the joy of creating something useful, 
thinking about tasks in a computation-
al way, and acquiring programming 
skills that can advance their career. 
Businesses may have their own motiva-
tion for adopting low-code platforms, 
which can alleviate the shortage of pro-
developers, reduce mistakes of tedious 
manual tasks, and multiply the time 
savings from one individual’s low-code 
program to their colleagues.31 Another 
factor driving low-code is the rise of 
cloud-based software as a service, pro-
viding both more interfaces to auto-
mate and a platform on which to deploy 
automations.

A few concepts are closely related 
to low-code programming. No-code 
programming is more purist, with zero 
handwritten code in a textual program-
ming language. End-user program-
ming (EUP) puts the emphasis on who 
is doing the programming (the end- 
user as citizen developer) rather than 
on how they are not doing their pro-
gramming (not with textual code).6 This 
term is common in the academic litera-
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ture and overlaps with low-code, but 
does not preclude the use of a textual 
programming language. Another gap 
between EUP and low-code is the latter 
aims to serve not just end users but also 
pro-developers.7,31

Bock and Frank7 and Sahay et al.31 
recently compared commercial low-
code platforms, and Barricelli et al. re-
cently mapped the EUP literature.6 In 
contrast, this article bridges the gap 
between low-code and the academic 
literature and adds missing details and 
perspective. Low-code encompasses 
more specialized techniques, such as 
visual programming languages (VPLs), 
programming by demonstration (PBD), 
programming by example (PBE), robot-
ic process automation (RPA), program-
ming by natural language (PBNL), and 
others. Surveys on these techniques are 
more specific and often dated.4,8,20,35 In 

contrast, this article reviews recent lit-
erature across all these techniques.

Given that low-code offers citizen 
developers a model to create computer 
programs, this article explores low-
code from the perspective of program-
ming models. A programming model 
is a set of abstractions that supports 
developing computer programs. Pro-
gramming models can be low-code or 
not, and they can be domain-specific or 
general-purpose. Some programming 
models are languages; for example, 
Java is a general-purpose language and 
SQL is domain-specific, and neither 
is low-code. Scratch is a low-code pro-
gramming model for kids that is media-
centric,29 making it domain-specific. 
The programming-model perspective 
helps highlight common techniques 
for writing, reading, and executing pro-
grams, and it helps relate low-code to 

research into program synthesis and 
domain-specific languages.

This article includes a deep-dive into 
three prominent low-code techniques: 
visual programming, programming by 
demonstration, and programming by 
natural language. The deep-dive focus-
es on fundamental building blocks and 
a unifying framework common to all 
three. The citations in this article cover 
both seminal work and recent advanc-
es in low-code programming models, 
for instance, based on artificial intelli-
gence. Moreover, this article aims to cut 
through the buzz surrounding low-code 
so as to expose the technical founda-
tions underneath. Hopefully, doing so 
will foster better development of the 
field through awareness of existing (al-
beit scattered) research, and will ulti-
mately lead to even more empowered 
citizen developers.
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Problem Statement
If low-code is the solution, then what is 
the problem? Given the term low-code, 
it might seem the answer is obviously 
code. Unfortunately, that answer is su-
perficial and nonconstructive. Defining 
a thing solely by what it is not, as the 
term low-code appears to do, causes 
confusion. Consider two other recent 
similarly named trends: NoSQL and 
serverless. At the surface, one might 
think NoSQL was mostly about reject-
ing SQL, but in fact, it was more about 
flexible data and consistency models 
than about the query language. Similar-
ly, serverless computing was not about 
eliminating compute servers, but about 
hiding them behind better abstractions. 
Defining a new trend by rejecting an old 
one grabs attention at the expense of be-
ing misleading. Just like serverless still 
needs servers, low-code (and even no-
code!) still needs code.

The three terms—low-code, NoSQL, 
and serverless—have one thing in com-
mon: a desire to avoid specific baggage 
while preserving core value. In NoSQL, 
the core value is durable and consistent 
storage. In serverless, it is portable and 
elastic compute. What then is the core 
value that low-code aims to preserve? 
This article argues it is computer pro-
gramming. Programming is to low-code 
what computing is to serverless. Low-
code is about creating instructions for a 
computer to execute or interpret. These 
instructions form a computer program, 
typically in a domain-specific language 
(DSL). For instance, low-code is often 
based on search-based program syn-
thesis, and synthesis usually targets a 
DSL carefully crafted for the purpose.2 
The program may not be exposed to the 
user, but it is there.

One way to better understand the 
problem statement behind low-code is 
to look at who it is for. The top portion 
of Figure 1 shows the spectrum of low-
code users. They range from citizen de-
velopers at one end to pro-developers at 
the other, with intermediate stages here 
dubbed semi developers. In this simpli-
fied view, users at the citizen developer 
end of the spectrum tend to have the 
most domain knowledge and users at 
the pro-developer end have the most 
programming expertise. Low-code can 
enable citizen developers to self-serve 
their programming needs instead of 
depending on pro-developers. At the 

same time, low-code can make pro-de-
velopers more productive, for example, 
in a new domain. Finally, low-code 
can break barriers between developers 
across the spectrum and help them col-
laborate on common ground.

The middle portion of Figure 1 
shows three representative low-code 
techniques. Programming expertise in-
duces a Venn diagram over the users, 
with the smallest subset being able to 
use the largest range of programming 
techniques. An edge between a set of us-
ers and a low-code technique indicates 
the users write or read a program with 
that technique. Specifically, all users 
can use programming by demonstra-
tion and programming by natural lan-
guage (edges to the outermost set of 
users encompassing citizen-, semi-, and 
pro-developers). Only semi-developers 
and pro-developers can readily use vi-
sual programming, though citizen de-
velopers may be easily trained to do so, 
as evidenced by Scratch.29 And only pro-
developers are likely to directly use a 
DSL. Therefore, while low-code typically 
targets a DSL, that DSL may not be ex-
posed, or if it is, may only be exposed to 
pro-developers. That is especially true 
in the common case of a DSL that is em-
bedded17 in a general-purpose textual 
programming language such as Python.

If the core value of low-code is to 
create computer programs, what ex-
actly is it about created programs that 
is deemed valuable? One way to shed 
more light on this question is to look 
at a seemingly opposing trend, namely 
the as-code movement. The as-code 
movement started with infrastructure 
as code, which automates standing up 
compute resources and the services 
running on them from a source code 
repository and a backup.18 Treating 
this process as code can speed it up, 
reduce mistakes, and facilitate testing. 
Another instance of as-code is security 
as code, where security policies, tem-
plates, and configuration files all live 
in a source code repository.25 Treating 
them as code lets them be versioned, 
inspected by humans, and checked by 
machines. To summarize, the as-code 
movement sees value in programs 
that are repeatable, tested, versioned, 
human-readable, and machine-check-
able. These are also desirable proper-
ties for low-code programs.

When citizen developers use low-

Just like  
serverless still 
needs servers,  
low-code  
(and even  
no-code!) still  
needs code. 
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ranged differently for use with other 
low-code techniques, such as spread-
sheets, rules, wizards, or templates. 
Not all building blocks appear in all 
techniques, but the following blocks 
recur enough to warrant brief up-front 
definitions:

 • code canvas: renders code, for ex-
ample, visually as a flow graph;

 • palette: offers components for 
drag-and-drop selection;

 • text box: holds natural-language 
text used for code search, description, 
or generation;

 • player: has buttons for capture, re-
play, pause, or step;

 • stage: shows the effect of code ex-
ecution; and,

 • configuration pane: lets the user 
customize components, for example, 
via graphical controls such as check-
boxes or sliders, or textually by typing 
small formulas.

Low-code techniques support not 
just writing programs, but also reading 
and executing them. A low-code system 
can execute the program immediately 
after it is written or save it for later, 
and the user may choose to execute the 
program multiple times, for example, 
after input data changes. Low-code 
techniques differ in which of the listed 
building blocks are engaged to read, 
write, or execute programs. Whereas 
Figure 1 blurred the read/write/execute 
distinction by using undirected edges, 
the rest of this section explicates the 
distinction by using directed edges and 

code, it is typically to create a program 
for a task they would otherwise do by 
hand. So what tasks is low-code good 
for? Generally speaking, low-code 
helps if it shaves off more time from 
a task than the time spent doing the 
low-code programming. This is true 
for tasks that are repetitive or time-
consuming. Of course, the equation 
shifts when the program can be used 
not just by the developer who created 
it, but also by others, shaving time off 
their tasks as well. In the extreme, pro-
developers create programs used by 
millions. Low-code is most appropri-
ate when it saves time, but not enough 
time to make professional coding eco-
nomically feasible. Low-code is suit-
able for tasks that are rule-based and 
low on exceptions. And besides the 
time savings, it can be even more ben-
eficial when the tedium of doing the 
task by hand causes errors.

Techniques
Here, we take a deep-dive into three 
representative techniques for low-code 
programming: VPLs, PBD, and PBNL. 
These three are a good set for the fol-
lowing reasons. Sahay et al.’s paper 
declares low-code as synonymous with 
just one technique, VPLs,31 but that 
perspective seems too narrow. Barri-
celli et al. list 14 different techniques 
for EUP,6 but they are not clearly sepa-
rated, and reviewing them all in detail 
would get too long-winded. In the past, 
the dominant low-code technique has 
been spreadsheets.9 The three chosen 
techniques instead align with present 
and future trends: VPLs are central 
to current commercial low-code plat-
forms;31 PBD is the backbone of RPA, 
which often uses record-and-replay;35 
and PBNL is poised to grow thanks to 
advances in deep learning-based large 
language models.11,33,39

Furthermore, the three techniques 
are well-suited for citizen developers 
by drawing upon universal skills: VPLs 
draw upon seeing, PBD draws upon the 
ability to use a computer  application, 
and PBNL draws upon speaking. In 
fact, low-code can offer an alternative 
modality when some other approach 
is impeded, such as using speech in-
terfaces when a user’s hands or eyes 
are unavailable. Finally, VPLs, PBD, 
and PBNL are sufficient to span a set 
of building blocks that can also be ar-

colors (orange for read, dark blue for 
write, and purple for execute).

Visual programming languages. The 
user drags visual components from a pal-
ette to a canvas, connects them, and con-
figures them.

Description. Visual programming 
languages let users write programs 
by directly manipulating their visual 
representation. There is a plethora of 
possible visual representations,8 often 
inspired by domain notation, such as 
electrical circuit diagrams. Two promi-
nent domain-independent visual rep-
resentations are boxes-and-arrows 
(for example, BPMN27) or interlocking 
puzzle pieces (for example, Scratch29). 
Here, boxes or puzzle pieces represent 
instructions in the program, and ar-
rows between boxes or the interlock of 
pieces represent how data and control 
flows between instructions.

Despite the diversity in visual lan-
guages, their programming environ-
ments tend to comprise similar build-
ing blocks, as depicted in Figure 2. 
The central building block is the code 
canvas, where the user can both read 
(orange arrow from canvas to eye) and 
write (dark blue arrow from hand to 
canvas) the program. Writing the pro-
gram also involves dragging compo-
nents from the palette to the canvas 
and possibly configuring them in a 
separate configuration pane. The pro-
gramming environment also often in-
cludes a stage, which visually shows a 
program execution, ideally live.34 For 

Figure 1.  Low-code users and techniques.
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programming languages is they are 
not always self-explanatory; that is why 
Figure 1 connects them to semi-devel-
opers. The mitigation for this need-to-
learn is user education, and for some 
VPLs, education is a primary purpose.29 
The visual notation can take up a lot of 
screen real estate; the mitigation is to 
elide detail, for example, by requiring a 
configuration pane or via modular lan-
guage constructs.3,26 Even the palette 
can get too full, hindering discoverabil-
ity, which can be mitigated by search fa-
cilities. A drawback of visual languages 
compared to textual languages is they 
tend to be co-dependent on their visual 
programming environment, hindering 
the use of basic tools such as diffing 
or search, or of third-party tools such 
as linters or code generators. This can 
be mitigated by backing the visual lan-
guage with a textual domain-specific 
language.37

Literature. Some seminal VPLs in-
clude BPMN-on-BPEL for modeling 
and executing business processes27 
and the Scratch language for teaching 
kids programming.29 Boshernitsan 
and Downes chronicle early VPLs and 
categorize them into purely visual vs. 
hybrid (mixed with text), and complete 
(sufficient procedural abstraction and 
data abstraction to be self-hosting) or 
not.8 Today, VPLs are central to com-
mercial low-code platforms such as Ap-
pian, Mendix, and OutSystems.31

Other papers address VPL imple-
mentation approaches, such as meta-
tools (tool used to implement other 
tools) and the model-view-controller 
(MVC) pattern, which lets users manip-
ulate the same model through multiple 
synchronized views. VisPro is a meta-
tool for creating visual programming 
environments.40 VisPro advocates for 
a coordinated set of visual and tex-
tual languages, using MVC to expose 
the same program (model) via mul-
tiple languages (views). More recently, 
Blockly is a meta-tool for creating VPLs 
with interlocking puzzle pieces28 such 
as those in Scratch. Some VPLs target 
pro-developers and are embedded in 
professional programming environ-
ments or languages. Projectional ed-
iting, such as in MPS,37 doubles down 
on the MVC paradigm, where even the 
textual language is projected into a 
view precluding syntax errors. More re-
cent work has demonstrated VPLs as li-

domain expert,8 or in visual builders 
for graphical user interfaces.24 Another 
strength is that, in contrast to PBD or 
PBNL, VPLs are usually unambiguous, 
thus increasing programmer control 
and reducing mistakes. Finally, com-
pared to textual programming lan-
guages, visual languages can rule out 
syntax errors37 and even simple type er-
rors29 by construction.

In the context of low-code program-
ming, the main weakness of visual 

example, in Scratch, the stage shows 
sprites in a virtual world. Besides mak-
ing the environment more engaging, 
the stage is also crucial for program 
understanding and debugging. To fa-
cilitate this, the stage is usually tightly 
connected to the canvas, helping the 
user navigate back and forth.

Strengths, weaknesses, and mitiga-
tions. One strength of VPLs is they tend 
to be easy to read, especially when re-
using notation already familiar to the 

Figure 2. Visual programming languages.
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iar with from their day-to-day work.21 
This makes PBD well suited for citizen 
developers, as there is no indirection 
between programming and execution. 
Furthermore, a demonstration is more 
concrete than a program in a different 
paradigm, since it works on specific 
values and has a straight-line flow of 
control and data.

Unfortunately, being so concrete is 
also PBD’s main weakness: to turn a 
demonstration into a program, it must 
be generalized, and automatic gener-
alization may not capture the user’s 
intent.14 Mitigations include hand-con-
figuration21 or multishot demonstra-
tion.15 PBD can be brittle with respect 
to the graphical user interface of the 
application on stage, especially when 
that changes; mitigations include heu-
ristics and specialized recorders that 
can map perception to application-
level concepts.32 Generalization can 
also overshoot, allowing a program to 
plow ahead even in unforeseen circum-
stances.16 This can be mitigated by pro-
viding guardrails, such as an attended 
execution mode that asks the user to 
confirm before certain actions. Finally, 
PBD can result in programs that are 
difficult to understand because they 
include spurious steps or are too fine-
grained, which is of course a problem 
in low-code programming.10 This can 
be mitigated by pruning and by discov-
ering macro-steps.

Literature. A good example of a 
PBD system is CoScripter, where the 
stage is a Web browser and the code 
canvas displays the program in natu-
ral language.21 The CoScripter paper 
describes interviews that informed its 
design, as well as experiences from 
real-world usage in a business setting. 
In Rousillon, the stage is also a Web 
browser and the canvas displays the 
program in a VPL, fusing sequences 
of several low-level steps into a single 
puzzle piece.10 In VASTA, the stage is 
the display of a mobile phone, and 
the system uses machine learning 
to reverse-engineer screenshots into 
user interface elements.32 In DIYA, the 
stage is a Web browser and users cus-
tomize the program during recording 
via voice input.14 PBD is used in com-
mercial robotic process automation 
products (such as UIPath, Automation 
Anywhere, and BluePrism) that let a 
human demonstrate a process on the 

braries extending textual languages. A 
livelit is a user-defined VPL widget that 
can be used in place of a textual liter-
al,26 and Andersen et al. let users imple-
ment VPL widgets for literals, patterns, 
and templates.3

Programming by demonstration. 
The user demonstrates the behavior on a 
canvas, with some configuration during 
or after recording.

Description. In PBD, the user dem-
onstrates how to perform a task by 
hand via the mouse and keyboard, and 
the PBD system records a program that 
can perform the same task automati-
cally. As shown in Figure 3, the dem-
onstration happens on a stage, which 
may be a specific application like a 
spreadsheet, or a Web browser visit-
ing a variety of sites and apps, or even 
a general computer desktop or smart-
phone screen. Ideally, the recorded 
program abstracts from perceptions 
to a symbolic representation, for in-
stance, by mapping pixel coordinates 
to a user-interface widget, or several 
keystrokes to a text string. Besides the 
stage, most PBD systems have a player 
with buttons to record and replay, plus 
often additional buttons such as pause 
or step (reminiscent of interactive de-
buggers).

The program is most useful if ex-
ecuting it does not yield the same be-
havior as the initial demonstration, but 
rather, generalizes to different data. 
For example, a program for ordering 
a taxi to any new location is more gen-
eral and more useful than a program 
for ordering a taxi to only a single hard-
coded location. Generalizing typically 
requires identifying variables or pa-
rameters, and may even entail adding 
conditionals, loops, or function calls. 
Unfortunately, a single demonstration 
is an inherently ambiguous specifica-
tion for such a more general program. 
Therefore, PBD systems often provide a 
configuration pane that allows users to 
disambiguate the generalization either 
during or after demonstration. Some 
PBD systems also have a code canvas 
that renders the recorded program for 
the user to read, for example, visually 
or in natural language.

Strengths, weaknesses, and mitiga-
tions. The main strength of program-
ming by demonstration is that the user 
can work directly with the software 
applications they are already famil-

To turn a  
demonstration  
into a program, 
it must be 
generalized, 
and automatic 
generalization  
may not capture 
user’s intent. 
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but unfortunately, those programs are 
often wrong.4 Natural language is am-
biguous, since humans are often vague 
and tend to assume common ground 
and omit context. On top of that, nat-
ural language processing (NLP) tech-
nologies are imperfect. The optional 
code canvas and stage can mitigate 
this weakness, by showing the user the 
synthesized program or its effect, thus 
giving them a chance to correct it. An-
other mitigation is to encourage users 
to keep their utterances short and not 
take advantage of the full expressive-
ness of natural language, since simpler 
programs are easier to get right.22 Fur-
thermore, some PBNL systems support 
hand-editing the program.

Another strength of PBNL is its ex-
pressiveness: natural language can 
express virtually anything humans 
want to communicate. In theory, PBNL 
restricts neither the sophistication 
nor the domains of programs. On the 
flip-side, PBNL systems often require 
an aligned corpus of utterances and 
programs to train NLP models, and 
obtaining such a corpus is expensive. 
Mitigating this is an active research 
topic in the machine-learning research 
community.33,38

Literature. As an interdisciplinary 
field of research, PBNL is best illumi-
nated through multiple surveys. An-
droutsopoulos et al. surveyed natural-
language interfaces to databases, a 
prominent form of PBNL going back 
to the 1960s.4 A common approach 
is to parse a natural-language utter-
ance into a tree and then map that tree 
to a database query. Kuhn surveyed 
controlled natural languages (CNLs), 
which restrict inputs to be unambigu-
ous while preserving some natural 
properties.20 Compared to unrestricted 
natural language, CNLs may make it 
harder for citizen developers to write 
programs but may make it easier to 
write correct programs. Allamanis et 
al. surveyed machine learning for code, 
arguing that code has a “naturalness” 
that makes it possible to adapt various 
NLP technologies to work on code.1 
The survey covers some code-generat-
ing models relevant to PBNL.

The most successful NLP technolo-
gy applied to PBNL is semantic parsers, 
which are machine-learning models 
that translate from natural language to 
an abstract syntax tree (AST) of a pro-

existing software and then refer to the 
automatic replay engine as a robot.35

PBD is closely related to PBE, since 
a demonstration is an elaborate exam-
ple. FlashFill is a seminal PBE system 
that uses example input and output 
columns in a spreadsheet to synthesize 
a program for transforming inputs to 
outputs.15 Both PBD and PBE are based 
on program synthesis.2 Recent work 
has harnessed novel machine-learn-
ing techniques for program synthesis, 
such as learned search strategies in 
DeepCoder5 and learned libraries in 
DreamCoder.13

PBD can be profitably combined 
with other low-code techniques. The 
play-in/play-out approach is a PBD 
system codesigned with its own VPL 
based on sequence diagrams.16 And 
SwaggerBot is a PBD system embedded 
in a natural-language conversational 
agent, enabling a form of PBNL.36

Programming by natural language. 
The user enters natural language text via 
keyboard or voice, and the system synthe-
sizes a program.

Description. In this low-code tech-
nique, the user enters text in natural 
language, either by typing on the key-
board or via speech-to-text. Figure 4 
indicates these two possibilities via 
blue arrows from the user’s hand or 
mouth to the text canvas. The PBNL 
system translates the user’s text, or ut-
terance, to a program. The system can 
optionally render the program on a 
code canvas for the user to read. This 
rendering might use a VPL, or it might 
use a controlled natural language20 for 
a disambiguated version of the user’s 
utterance. The system can also option-
ally show the effect of the program’s ex-
ecution on a stage. For example, if the 
program is a query in a spreadsheet, 
the spreadsheet is the stage, and the 
result can be shown as a new table.

Strengths, weaknesses, and mitiga-
tions. The main strength of PBNL is 
that it is not just low-code, but more 
generally, low on demands during pro-
gramming. As shown in Figure 4, its 
programming environment has only 
three building blocks (text canvas, code 
canvas, and stage), all optional. That 
means PBNL in principle even works in 
circumstances where the user’s hands 
and eyes are otherwise occupied.

PBNL makes it particularly easy for 
citizen developers to create programs, 

A strength of 
programming by 
natural language is 
its expressiveness: 
natural language 
can express 
virtually anything 
humans want to 
communicate.  
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grow along with relevant advances in AI. 
AI is also prominent in PBD, character-
ized in the table as medium ambiguity. 
For example, DeepCoder shows the in-
terplay between program synthesis for 
defining a space of possible programs 
and checking whether a given program 
is correct, and AI for guiding the search 
through that space.5 As another exam-
ple, VASTA uses speech recognition, 
object recognition, and optical charac-
ter recognition to better understand a 
user’s demonstration of a task.32

Communicating with humans and 
machines. Pro-developers use code in 
textual programming languages to 
communicate with a computer, telling 
it what to do. In addition, developers 
can also use programming languages 
to communicate with each other or with 
their own future self. A low-level pro-
gramming language such as C gives de-
velopers more control of the computer, 
whereas a high-level language such as 
Python arguably makes communica-
tion among humans more effective. 
Similarly, low-code programs can serve 
both to communicate instructions to a 
computer and to communicate among 
low-code users. Being even more high-
level than, say, Python, low-code can 
serve as a lingua franca to help citizen 
developers and pro-developers commu-
nicate more effectively with each other. 
For instance, a citizen developer might 
use PBD to communicate a desired be-
havior to a pro-developer to flesh out.16 
Conversely, a pro-developer might use 
PBNL or a VPL to communicate a pro-
posed behavior to a domain expert for 
explanation or approval.21,27

Domain-specific languages for low-
code. All three low-code techniques 
noted earlier are intrinsically related to 
DSLs: most VPLs are DSLs (for example, 
Scratch29), and both programming by 
demonstration and programming by 
natural language usually target DSLs 
(DIYA targets its co-designed Thing-
Talk 2.0 DSL14). Mernik et al. list further  

PBNL. On the other hand, there is little 
difference in the Read and Execute col-
umns: users read programs on a code 
canvas (if provided), and watch them 
executing on the stage (if visible). That 
hints at an opportunity for reuse across 
tools for different techniques.

A core problem with low-code pro-
gramming is ambiguity. While visual 
programming languages can be rigor-
ous and unambiguous, there is ambi-
guity in how to generalize from a dem-
onstration to a program that works in 
different situations, and natural lan-
guages are inherently ambiguous as 
well. More ambiguous techniques may 
only work reliably on small and simple 
problems. Systems for PBD and PBNL 
must guess at the user’s intent and are 
likely to guess wrong when programs 
get complicated. This motivates offer-
ing users an option to read or even cor-
rect programs or their executions.

A core goal of low-code program-
ming is to reduce the need to learn a 
programming language. Citizen devel-
opers can demonstrate a program or 
describe it in natural language without 
having been taught how to do so. Visual 
programming is often less self-explan-
atory, which is why Figure 1 associates 
it more with semi-developers. On the 
other hand, depending on the user’s 
attitude, the need-to-learn can also be 
good, since it grows computational 
thinking skills.

Artificial intelligence for low-code. 
Does the ongoing rapid progress in AI 
fuel progress in low-code? This article 
argues that yes, it does, in proportion 
to the ambiguity of the low-code tech-
nique. Out of the three techniques in the 
table, AI is most prominent for PBNL, 
which is also the most ambiguous. 
PBNL can hardly avoid AI except by us-
ing a controlled natural language,20 but 
that would make it feel more like code. 
Currently a rising AI approach for PBNL 
is to use large language models with 
code generation.11,33 PBNL will likely 

gram. For instance, SILT learns rule-
based semantic parsers that have been 
demonstrated for programs that coach 
robotic soccer teams or for programs 
that query geographic databases.19 The 
Overnight paper addresses the prob-
lem of obtaining an aligned corpus for 
training a semantic parser via synthet-
ic data generation and crowdsourced 
paraphrasing.38 Pumice tackles the 
ambiguity of natural language by a dia-
logue, where the system prompts for 
clarification which the user can pro-
vide via natural language or demon-
stration.22 And Shin et al. show how to 
coax a pretrained large language mod-
el into doing semantic parsing without 
requiring fine-tuning.33

Another approach to PBNL is pro-
gram synthesis, which typically search-
es a space of possible programs.2 Desai 
et al. describe a meta-synthesizer that, 
given a DSL grammar and an aligned 
corpus, creates a synthesizer from nat-
ural language to programs in the DSL.12 
PBNL is not limited to domain-specific 
languages for citizen developers. Yin 
and Neubig describe a semantic pars-
er that uses deep learning to encode a 
sequence of natural-language tokens, 
then decodes that into a Python AST.39 
Codex is a pre-trained large language 
model for natural language first fine-
tuned on unlabeled code, then fine-
tuned again on an aligned corpus of 
utterances and programs.11

Perspectives
While the previous discussion covered 
three low-code techniques in depth, 
here we cover cross-cutting topics be-
yond any single technique. The accom-
panying table compares the techniques 
discussed earlier. The Activity columns 
indicate how each technique supports 
the user in writing, reading, and execut-
ing programs. The main difference is in 
the Write column: users write programs 
mainly on the code canvas for VPLs, 
the stage for PBD, and a text canvas in 

Comparing low-code techniques.

Technique
Activity

Ambiguity Need to learn
Write Read Execute

Visual programming languages code canvas, palette, config. pane code canvas stage low medium

Programming by demonstration stage, player, config. pane code canvas player, stage medium low

Programming by natural language text canvas code canvas stage high low
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where users can write programs in mul-
tiple ways. Such combinations can com-
pensate for weaknesses of techniques. 
For example, in Rousillon, the user first 
writes a program by demonstrating 
how to scrape data from web pages;10 
since one weakness of PBD is ambigu-
ity, Rousillon lets the user read the re-
sulting program in a scratch-like VPL.10 
Pumice combines PBD with PBNL: the 
user first writes a program via natural 
language; since one weakness of PBNL 
is ambiguity, Pumice next lets the user 
clarify with PBD.22

Meta-tools and meta-circularity. A 
meta-tool for low-code is a tool used to 
implement low-code tools. In tradition-
al programming languages, meta-tools 
(such as parser generators) have long 
been an essential part of the tool-writ-
er’s repertoire. Similarly, meta-tools for 
low-code can speed up the development 
of low-code tools by automating well-
known but tedious pieces. Thus, meta-
tools make it easier to build several tools 
or variants, for instance, to experiment 
with the user experience. There are ex-
amples of meta-tools for all three low-
code techniques discussed previously. 
Blockly28 is a tool for creating VPLs that 
look similar to Scratch; DreamCoder13 
is a tool for learning a library of reusable 
components along with a neural search 
policy for PBE; and Overnight38 is a tool 
for building semantic parsers for PBNL 
with synthetic training data.

A meta-circular tool for low-code is 
a meta-tool for low-code that is itself 
a low-code tool. Not all meta-tools are 
metacircular tools, as that requires 
them to be powerful enough for serious 
software development. Supporting all 
that power can compromise the tool’s 
low-code nature: complex features can 
get in the way of learning easy ones. On 
the positive side, meta-circular tools 
can democratize the creation of low-
code tools themselves. Furthermore, 
tool developers who use their own tools 
may empathize more with their users’ 
needs. Examples for meta-circular low-
code tools include VisPRO40 and Racket3 
(both for VPLs).

Low-code foundation. In addition to 
meta-tools, are there other reusable 
modules that make it easier to build 
new low-code tools? The beginning of 
the Techniques section listed several 
reusable building blocks for low-code 
programming interfaces: code can-

is Lightweight Modular Staging, which 
uses operator overloading and dynamic 
compilation, such as in Scala.30

Model view controller. The current 
state-of-the-art VPLs and associated 
meta-tools are based on the MVC pat-
tern.28,40 And in PBD or PBNL, even 
though the user does not use a code 
canvas to write a program, the sys-
tem may optionally provide one for 
reading it, again using MVC. Figure 
5 illustrates MVC with a superset of 
the components from each low-code 
technique. Low-code programming 
tools provide one or more views of 
the program. Some of these views are 
read-only, while others are read-write 
views. When multiple views are pres-
ent, the system keeps them in sync 
with a single joint model, and through 
that, with each other. Edits in one view 
are projected live to all other views. 
The model is a program in a DSL. Op-
tionally, the system may even expose 
the textual DSL as another view, for in-
stance, in a structure editor.37 Besides 
the model and the view, the third part 
of the MVC pattern is the controller, 
which, for low-code, can contain a 
player and/or a configuration pane.

Combining multiple low-code tech-
niques. When users write a program by 
demonstration or by natural language, 
the system may let them read it on a 
code canvas. And once a system lets us-
ers read programs on a code canvas, a 
logical next step is to also let them write 
programs there, such as, to correct mis-
takes from generalization or from natu-
ral language processing. This yields a 
combination of low-code techniques, 

benefits of DSLs: they facilitate program 
analysis, verification, optimization,  
parallelization, and transformation 
(AVOPT).23

While reviewing the low-code litera-
ture reveals a close tie to DSLs, those 
DSLs are not always exposed to the user. 
For instance, the DSL may manifest as a 
proprietary file format or as an undocu-
mented internal representation. If the 
DSL is exposed, users can more easily 
read, test, and audit programs, version 
them and store them in a shared reposi-
tory, and manipulate them with tools 
for program transformation or genera-
tion. Also, an exposed DSL is less locked 
into a specific programming environ-
ment or its vendor. When exposed, the 
DSL should be designed for humans, 
possibly based on interviews and user 
studies as role-modeled by Leshed et 
al.21 On the other hand, a DSL that is not 
exposed will be shaped by different fac-
tors, such as the ease of enumerating 
valid programs, which can be improved 
by breaking symmetries in the search 
space.13

DSLs (including DSLs for low-code) 
may be embedded in a general-purpose 
language. Compared to a stand-alone 
DSL, an embedded DSL is often easier 
to implement (for example, due to not 
requiring a custom parser) and easier 
to use (due to syntax highlighting and 
auto-completion tools of the host lan-
guage). The approach to implementing 
an embedded DSL depends on the facil-
ities of the host language. One approach 
is Pure Embedding, which uses higher-
order functions and lazy evaluation, 
such as in Haskell.17 Another example 

Figure 5. Model-view-controller for low-code.
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users and discusses common build-
ing blocks, strengths, and weaknesses. 
This article argues that domain-spe-
cific languages and the model-view-
controller pattern constitute a com-
mon backbone and unifying principle 
across low-code techniques. 
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vas, palette, text box, player, stage, and 
configuration pane. Besides making 
it easier to create low-code tools, such 
reuse can also give different tools a 
more uniform look-and-feel, thus re-
ducing the need-to-learn. In the case 
of multiple low-code tools for the same 
domain, reusing the same domain-
specific language makes them more 
interoperable. Of course, low-code 
tools in different domains will require 
different DSLs, but they may still be 
able to reuse some sublanguage, such 
as expressions or formulas with basic 
arithmetic and logical operators and 
a function library. There are also AI 
components that can be reused across 
low-code tools, such as speech recogni-
tion modules, a search-based program 
synthesis engine, semantic parsers, or 
language models.

End-user software engineering. Most 
of the discussion on low-code program-
ming focuses on writing a program: 
low-code enables citizen developers 
to rapidly create a prototype. But what 
happens over time when these pro-
grams stick around, get used in new 
circumstances that the developer did 
not foresee, get modified or general-
ized, and proliferate? At that point, us-
ers need end-user software engineering 
(EUSE) for quality control, for instance, 
by showing test coverage, letting users 
add assertions, and helping them local-
ize faults directly in their low-code pro-
gramming environment.9 Citizen devel-
opers often struggle with anticipating 
exceptional contexts for their programs; 
Pumice is a low-code tool that lets users 
extend programs with new branches 
when the unforeseen happens.22 An-
other way to support EUSE is to expose 
the DSL, which makes it easier to adopt 
established software development 
workflows and the associated tools 
(such as version-controlled source code 
repositories, regression tests, or issue 
trackers) for low-code. Those tools also 
facilitate collaboration between citizen 
developers and professional software 
engineers.

Conclusion
This article reviews research relevant 
to low-code programming models 
with a focus on visual programming, 
programming by demonstration, and 
programming by natural language. It 
maps low-code techniques to target 
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