
Lale: Consistent Automated Machine Learning
Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar

IBM Research, USA

1
2
3
4
5
6
7
8

9
10
11
12
13

14
15
16

17
18

19
20

Figure 1: Lale example for consistent automated machine learning, explained in Section 3.

ABSTRACT

Automated machine learning makes it easier for data scientists to
develop pipelines by searching over possible choices for hyperpa-
rameters, algorithms, and even pipeline topologies. Unfortunately,
the syntax for automated machine learning tools is inconsistent
with manual machine learning, with each other, and with error
checks. Furthermore, few tools support advanced features such as
topology search or higher-order operators. This paper introduces
Lale, a library of high-level Python interfaces that simplifies and
unifies automated machine learning in a consistent way.

1 INTRODUCTION

Machine learning (ML) is widely used in various data science prob-
lems. There are many ML operators for data preprocessing (scaling,
missing imputation, categorical encoding), feature extraction (prin-
cipal component analysis, non-negative matrix factorization), and
modeling (boosted trees, neural networks). A machine learning
pipeline consists of one or more operators that take the input data
through a series of transformations to finally generate predictions.
Given the plethora of ML operators (for example, in the widely
used scikit-learn library [5]), the task of finding a good ML pipeline
for the data at hand (which involves not only selecting operators
but also appropriately configuring their hyperparameters) can be
tedious and time consuming if done manually. This has led to a
wider adoption of automated machine learning (AutoML), with

AutoML Workshop @ KDD’20, August 22–27, 2020, Page 1
https://sites.google.com/view/automl2020-workshop/.

the development of novel algorithms (such as SMAC [12], hyper-
opt [3], and subsequent recent work [16]), open source libraries
(auto-sklearn [10], hyperopt-sklearn [4, 15], TPOT [17]), and even
commercial tools.

Scikit-learn provides a consistent programming model for man-
ual ML [5], and various other tools (such as XGBoost [6], Light-
GBM [14], and Tensorflow’s tf.keras.wrappers.scikit_learn) maintain
consistency with this model whenever appropriate. AutoML tools
usually feature two pieces – (i) a way to define the search space
corresponding to the pipeline topology, the operator choices in
that topology, and their respective possible hyperparameter con-
figurations, and (ii) an algorithm that explores this search space
to optimize for predictive performance. Many of these also try to
maintain consistency with the scikit-learn model but only when the
user gives up all control and lets the tool completely automate the
ML pipeline configuration, eschewing item (i) above. Users often
want to retain some control over the automation, for example, to
comply with domain-specific requirements by specifying opera-
tors or hyperparameter ranges to search over. While fine-grained
control over the automation is possible (we will discuss examples),
users need to manually configure the search space. This search
space specification differs for each of the different AutoML tools
and differs from the manual programming model.

We believe that proper abstractions are necessary to provide a
consistent programming model across the entire spectrum of con-
trolled automation. To this end, we introduce Lale, an open-source
Python library1, built upon mathematically grounded abstractions

ar
X

iv
:2

00
7.

01
97

7v
1

 [
cs

.L
G

]
 4

 J
ul

 2
02

0

https://sites.google.com/view/automl2020-workshop/

AutoML Workshop @ KDD’20, August 22–27, 2020, Page 2 Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar

1 pipe = Pipeline([
2 ('transform', PCA(n_components=4)),
3 ('classify', LinearSVC(dual=False, C=10))])
4 pipe.fit(train_X, train_y)

Figure 2: Example for manual scikit-learn pipeline.

1 pipe = Pipeline([
2 ('transform', PCA()),
3 ('classify', RandomForestClassifier())])
4 N = [2, 4, 8]
5 C = [1, 10, 100, 1000]
6 param_grid = [
7 {'transform__n_components': N,
8 'classify': [LinearSVC(dual=False)],
9 'classify__C': C},
10 {'transform__n_components': N,
11 'classify': [RandomForestClassifier(n_estimators=12)]}]
12 grid = GridSearchCV(pipe, param_grid=param_grid)
13 grid.fit(train_X, train_y)

Figure 3: Example for scikit-learn GridSearchCV.

of the elements of the pipeline (for example, topology, operator, hy-
perparameter configurations), and designed around scikit-learn [5]
and JSON Schema [18]. Lale provides a programming interface for
specifying pipelines and search spaces in a consistent manner while
providing fine-grained control across the automation spectrum. The
abstractions also allow us to provide a consistent programming
interface for capabilities for which no such interface currently exists:
(i) search spaces with higher-order operators (operators, such as
ensembling, that have other operators as hyperparameters), and
(ii) search spaces that include search for the pipeline topology via
context-free grammars [7]. The contributions of this paper are:
1. A pipeline specification syntax that is consistent across the au-

tomation spectrum and grounded in established technologies.
2. Automatic search space generation from pipelines and schemas

for a consistent experience across existing AutoML tools.
3. Higher-order operators (for ensembles, batching, etc.) with auto-

matic AutoML search space generation for nested pipelines.
4. A grammar syntax for pipeline topology search that is a natural

extension of the pipeline syntax.
Overall, we hope Lale will make data scientists more productive

at finding pipelines that are consistent with their requirements and
yield high predictive performance.

2 PROBLEM STATEMENT

Consistency is a core problem for AutoML and existing libraries
fall short on this front. This section uses concrete examples from
popular (Auto-)ML libraries to present four shortcomings in existing
systems. We strive to do so in a factual and constructive way.

P1: Provide a consistent programming model across the automation
spectrum. There is a spectrum of AutoML ranging from manual
machine learning (no automation) to hyperparameter tuning, op-
erator selection, and pipeline topology search. Unfortunately, as

1https://github.com/ibm/lale

1 N = scope.int(hp.qloguniform('N', 2, 8, 1))
2 C = hp.lognormal('C', 1, 1000)
3 estim = HyperoptEstimator(
4 preprocessing=[pca('transform', n_components=N)],
5 classifier=hp.choice('classify', [
6 liblinear_svc('classify.svc', dual=False, C=C),
7 random_forest('classify.rf', n_estimators=12)]),
8 algo=tpe.suggest, max_evals=100, trial_timeout=120)
9 estim.fit(train_X, train_y)

Figure 4: Example for hyperopt-sklearn.

1 estim = AutoSklearnClassifier(
2 include_preprocessors=['pca'],
3 include_estimators=['liblinear_svc', 'random_forest'],
4 time_left_for_this_task=1800, per_run_time_limit=120)
5 estim.fit(train_X, train_y)

Figure 5: Example for auto-sklearn based on SMAC.

users progress across this spectrum, the state-of-the-art libraries
require them to learn and use different syntax and concepts.

Figure 2 shows an example from the no-automation end of the
spectrum using scikit-learn [5]. The code assembles a two-step
pipeline of a PCA transformer and a LinearSVC classifier and manually
sets their hyperparameters, for example, n_components=4.

The example in Figure 3 automates hyperparameter tuning and
operator selection using GridSearchCV from scikit-learn. Lines 1–3
resemble Figure 2. Lines 4–11 specify a search space, consisting of
a list of two dictionaries. In the first dictionary, Line 7 specifies the
list of values to search over for the n_components hyperparameter of
the PCA operator; Line 8 specifies the classify step of the pipeline
to be a LinearSVC operator; and Line 9 specifies the list of values to
search over for the C hyperparameter of the LinearSVC operator. The
second dictionary is similar, but specifies the RandomForestClassifier.

The syntax for a pipeline (Figure 2 Lines 1–3) differs from that for
a search space (Figure 3 Lines 4–11). The mental model is that op-
erators and hyperparameters are pre-specified and then the search
space selectively overwrites them with different choices. To do so,
the code uses strings to name steps and hyperparameters, with a
double underscore ('__') name mangling convention to connect
the two. Relying on strings for names can cause hard-to-detect
mistakes [1]. In contrast, using a single syntax for both manual and
automated pipelines would make them more consistent and would
obviate the need for mangled strings to link between the two.

P2: Provide a consistent programming model across different Au-
toML tools. Compared to GridSearchCV, Bayesian optimizers such as
hyperopt-sklearn [15] and auto-sklearn [10] speed up search using
smarter search strategies. Unfortunately, each of these AutoML
tools comes with its own syntax and concepts.

Figure 4 shows an example using the hyperopt-sklearn [15] wrap-
per for hyperopt [3]. Line 1 specifies a discrete search space Nwith a
logarithmic prior, a range from 2..8, and a quantization to multiples
of 1. Line 2 specifies a continuous search space Cwith a logarithmic
prior and a range from 1..1000. Line 4 sets the transform step of the
pipeline to pca with hyperparameter n_components=N. Lines 5–7 set
the classify step to a choice between linear_svc and random_forest.

https://github.com/ibm/lale

Lale: Consistent Automated Machine Learning AutoML Workshop @ KDD’20, August 22–27, 2020, Page 3

Figure 5 shows the same example using auto-sklearn [10]. While
power users can use the ConfigurationSpace used by SMAC [12] to
adjust search spaces for individual hyperparameters, we elide this
for brevity. Line 2 sets the preprocessor to 'pca' and Line 3 sets the
classifier to a choice of 'linear_svc' or 'random_forest'.

The syntaxes for the three AutoML tools in Figures 3, 4, and 5 dif-
fer. There are three ways to refer to the same operator: PCA, pca(..),
and 'pca'. There are three ways to specify an operator choice: a list
of dictionaries, hp.choice, and a list of strings. The mental model
varies from overwriting to nested configuration to string-based
configuration. Users must learn new syntax and concepts for each
tool and must rewrite code to switch tools. Moreover, as we con-
sider more sophisticated pipelines (beyond the simple two-step one
presented in the example), the search space specifications get even
more convoluted and diverse between these existing specification
schemes. A unified syntax would make these tools more consistent,
easier to learn, and easier to switch. Furthermore, this syntax should
unify not just AutoML tools but also be consistent with the manual
end of the spectrum (P1). More specifically, given that scikit-learn
sets the de-facto standard for manual ML, the syntax should be
scikit-learn compatible.

P3: Support topology search and higher-order operators in Au-
toML tools. The tools previously discussed search operators and
hyperparameters but do not optimize the topology of the pipeline
itself. There are some tools that do, including TPOT [17], Recipe [8],
and AlphaD3M [9]. Unfortunately, their methods for specifying
the search space are inconsistent with manual machine learning
and established tools. TPOT does not allow the user to specify the
search space for pipeline topologies (the user can specify the set of
operators and can fix the pipeline topology, disabling the topology
search). Recipe and AlphaD3M use context-free grammars to spec-
ify the search space for the topology, but in a manner inconsistent
with each other or with other levels of automation.

Some transformers (e.g. RFE in Figure 6 Line 7) and estimators
(e.g. AdaBoostClassifier) are higher-order : they take other operators
as arguments. Using the AutoML tools discussed so far to search
inside their nested operators is not straightforward. The aforemen-
tioned TPOT, Recipe, and AlphaD3M do not handle higher-order
operators in their search for pipeline topology.

A unified syntax for topology search and higher-order operators
that is a natural extension of the syntax for manual machine learn-
ing, algorithm selection, and hyperparameter tuning would make
AutoML more expressive while keeping it consistent.

P4: Check for invalid configurations early and prune them out of
search spaces. Even if the search for each hyperparameter uses a
valid range in isolation, their combination can violate side con-
straints. Worse, these errors may be detected late, wasting time.

Figure 6 shows a misconfigured pipeline: the hyperparameters
for LR in Line 7 are valid in isolation but invalid in combination.
Unfortunately, this is not detected when the pipeline is created on
Line 7. Instead, when Line 10 tries to fit the pipeline, it first fits the
first step of the pipeline (see RFE in Line 6). Only then does it try to
fit the LR and detect the mistake. This wastes 10 minutes (Line 15).

In contrast, a declarative specification of the side constraints
would both speed up this manual example and enable AutoML
search space generators to prune cases that violate constraints,

1
2
3
4
5
6
7

8
9

10
11
12
13

14
15

16

Figure 6: Example of scikit-learn error checking.

thus speeding up the automated case too. Furthermore, in some
situations, invalid configurations cause more harm than just wasted
time, leading optimizers astray (Section 6). It is possible (with vary-
ing levels of difficulty) to incorporate these side constraints with
the search space specification schemes used by the tools discussed
earlier, but they each have inconsistent methods for doing this.
Moreover, the complexity of these specifications make them error
prone. Additionally, while these side constraints help the optimizer,
they do not directly help detect misconfigurations (as in Figure 6).
Custom validators would need to be written for each tool.

3 PROGRAMMING ABSTRACTIONS

This section shows Lale’s abstractions for consistent AutoML, ad-
dressing the problem statements P1 ∧ P2 ∧ P3 ∧ P4 from Section 2.

3.1 Abstractions for Declarative AutoML

An individual operator is a data science algorithm (aka. a primitive
or a model), which may be a transformer or an estimator such as
classifier or a regressor. Individual operators are modular building
blocks from libraries such as scikit-learn. Figure 1 Lines 2–6 con-
tain several examples, e.g., import LinearSVC as SVM. Mathematically,
Lale views an individual operator as a function of the form

indivOp : θhyperparams → Dfit → Din → Dout

This view uses currying: it views an operator as a sequence of
functions each with a single argument and returning the next in
the sequence. An individual operator (e.g., SVM) is a function from
hyperparameters θhyperparams (e.g., dual=False) to a function from
training data Dfit (e.g., train_X, train_y) to a function from input
dataDin (e.g., test_X) to output dataDout (e.g., predicted in Figure 1
Line 17). In the beginning, all arguments are latent, and each step
in the sequence captures the next argument as given. The scikit-
learn terminology for the three curried sub-functions is init, fit, and
predict. Viewing operators as mathematical functions avoids com-
plications arising from in-place mutation. It lets us conceptualize
bindings as lifecycle: each bound, or captured, argument unlocks
the functionality of the next state in the lifecycle.

A pipeline is a directed acyclic graph (DAG) of operators and
a pipeline is itself also an operator. Since a pipeline contains op-
erators and is an operator, it is highly composable. Furthermore,

AutoML Workshop @ KDD’20, August 22–27, 2020, Page 4 Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar

viewing both individual operators and pipelines as special cases
of operators makes the concepts more consistent. An example
is make_pipeline(make_union(PCA, RFC), SVM), which is equivalent to
((PCA & RFC) >> ConcatFeatures >> SVM). Here, & is the and combina-
tor and >> is the pipe combinator. Combinators make edges more
explicit and code more concise. An expression x & y composes x
and y without introducing additional edges. An expression x >> y

introduces edges from all sinks of subgraph x to all sources of y.
Mathematically, Lale views a pipeline as a function of the form

pipeline : θtopology → θhyperparams → Dfit → Din → Dout

This uses currying just like individual operators, plus an additional
θtopology at the start to capture the steps and edges. A pipeline
is trainable if both θtopology and θhyperparams are given, i.e., the
hyperparameters of all steps have been captured. To fit a trainable
pipeline, iterate over the steps in a topological order induced by
the edges. For each step s , let Ds

fit be the training data for the step,
which is either the pipeline’s training data if s is a source or the
predecessors’ output data Ds

fit = [Dp
out]p∈preds(s) otherwise. Then,

recalling that s is a curried function, calculate strained = s(Ds
fit) and

Ds
out = strained(Ds

fit). The trained pipeline substitutes trained steps
for trainable steps in θtopology. To make predictions with a trained
pipeline, simply interpret >> as function composition ◦.

An operator choice is an exclusive disjunction of operators and is
itself also an operator. Operator choice specifies algorithm selection,
and by being an operator, addresses problem P1 from Section 2. An
example is (SVM | RFC), where | is the or combinator. Mathematically,
Lale views an operator choice as a function of the form

opChoice : θsteps → θhyperparams → Dfit → Din → Dout

This again uses currying. Argument θsteps is the list of operators
to choose from. The θhyperparams of an operator choice consists of
an indicator for which of its steps is being chosen, along with the
hyperparameters for that chosen step. Onceθhyperparams is captured,
the operator choice is equivalent to just the chosen step, as shown
in the visualization after Figure 1 Line 20.

The combined schema of an operator specifies the valid values
along with search guidance for its latent arguments. It addresses
problem P4 from Section 2, supporting automated search with a
pruned search space and early error checking all from the same sin-
gle source of truth. Consider the pipeline PCA >> (J48 | LR), where
PCA and LR are the principal component analysis and logistic re-
gression from scikit-learn and J48 is a decision tree with pruning
from Weka [11]. These operators have many hyperparameters and
constraints and Lale handles all of them. For didactic purposes,
this section discusses only a representative subset. Figure 7 shows
the JSON Schema [18] specification of that subset. The open-source
Lale library includes JSON schemas for many operators, some hand-
written and others auto-generated [2]. The number of components
for PCA is given by N , which can be a continuous value in (0..1)
or the categorical value mle. The prior distribution helps AutoML
tools search faster. J48 has a categorical hyperparameter R to enable
reduced error pruning and a continuous confidence thresholdC for
pruning. Mathematically, we denote allOf as ∧, anyOf as ∨, and not

as ¬. Even though the valid values for C are (0..1), search should
only consider valuesC ∈ (0..0.5). The constraint in Lines 16–19 en-
codes a conditional (R = true) ⇒ (C = 0.25) by using the equivalent

1 PCA: {
2 type: object,
3 properties: {
4 N: { anyOf: [
5 { description: "Amount of variance to explain",
6 type: number,minimum: 0.0,maximum: 1.0,
7 distribution: uniform},
8 { description: "Guess with Minka's MLE", enum: [mle]}]}}}
9 J48: { allOf: [
10 { type: object,
11 properties: {
12 R: { description: "Use reduced error pruning", type: boolean },
13 C: { description: "Pruning confidence threshold",
14 type: number,minimum: 0.0, maximum: 1.0,
15 maximumForOptimizer: 0.5, distribution: uniform }}},
16 { description: "Setting confidence makes no sense for R",
17 anyOf: [
18 { not: { type: object, properties: {R: {enum: [true]}}}},
19 { type: object, properties: {C: {enum: [0.25]}}}]}]}
20 LR: { allOf: [
21 { type: object,
22 properties: {
23 S: { description: "Optimization problem solver",
24 enum: [linear, sag, lbfgs], default: linear},
25 P: { description: "Penalization norm",
26 enum: [l1, l2], default: l2}}},
27 { description: "Solvers sag and lbfgs support only l2.",
28 anyOf: [
29 { not: { type: object, properties: {S: {enum: [sag, lbfgs]}}}},
30 { type: object, properties: {P: {enum: [l2]}}}]}]}

Figure 7: JSON Schemas for hyperparameters.

¬(R = true) ∨ (C = 0.25). LR has two categorical hyperparameters
S (solver) and P (penalty), with a constraint that solvers sag and
lbfgs only support penalty l2, which we already encountered in
Figure 6. Going forward, we will denote a JSON Schema object with
properties as dict{} and a JSON Schema enum as []. Eliding priors,
this means Figure 7 becomes:

PCA : dict{N : (0..1) ∨ [mle])}
J48 : dict{R: [true, false],C: (0..0.5)}∧

(dict{R: [true]} ⇒ dict{C: [0.25]})
LR : dict{S : [linear, sag, lbfgs], P : [l1, l2]}∧

(dict{S : [sag, lbfgs]} ⇒ dict{P : [l2]})

To auto-configure an operator means to automatically capture
θhyperparams, which involves jointly selecting algorithms (for op-
erator choices) and tuning hyperparameters (for individual oper-
ators). We saw examples for doing this with scikit-learn’s Grid-
SearchCV [5], hyperopt-sklearn [15], and auto-sklearn [10] in Fig-
ures 3, 4, and 5. Lale offers a single unified syntax shown in Fig-
ure 1 Lines 15–16 to address problem P2 from Section 2. Mathe-
matically, let op be either an individual operator or a pipeline or
choice whose θtopology or θsteps are already captured. That means
op has the form θhyperparams → Dfit → Din → Dout. Then
auto_configure(op,Dfit) returns a function of the formDin → Dout.
Section 4 discusses how to implement auto_configure using schemas.

3.2 Abstractions for Controlled AutoML

AutoML users rarely want to completely surrender all decisions
to the automation. Instead, users typically want to control certain

Lale: Consistent Automated Machine Learning AutoML Workshop @ KDD’20, August 22–27, 2020, Page 5

1 from xgboost import XGBRegressor as Forest
2 import lale.schemas as schemas
3 lale.wrap_imported_operators()
4 Grove = Forest.customize_schema(
5 n_estimators=schemas.Int(min=2, max=6),
6 booster=schemas.Enum(['gbtree']))

Figure 8: Example for custom schemas.

decisions based on their problem statement and expertise. This
section discusses how Lale supports such controlled AutoML.

The lifecycle state of an operator is the number of curried ar-
guments it has already captured that determines the functionality
it supports. To enable controlled AutoML, Lale pipelines can mix
operators with different states. The visualizations in Figure 1 in-
dicate lifecycle states via colors. A planned operator, shown in
dark blue , has captured only θtopology or θsteps, but θhyperparams
is still latent. Planned operators support auto_configure but not fit
or predict. A trainable operator, shown in light blue , has also cap-
tured θhyperparams, leaving Dfit latent. Trainable operators support
auto_configure and fit but not predict. A trained operator, shown in
white, also captures Dfit. Trained operators support auto_configure,
fit, and predict. Later states subsume the functionality of earlier
states, enabling user control over where automation is applied. The
state of a pipeline is the least upper bound of the states of its steps.

Partially captured hyperparameters of an individual operator treat
some of its hyperparameters as given while keeping the remain-
ing ones latent. Specifying some hyperparameters by hand lets
users control and hand-prune the search space while still searching
other hyperparameters automatically. For example, Figure 1 Line 12
shows partially captured hyperparameters for SVM and RFC. The vi-
sualization after Line 13 reflects this in a tooltip for RFC. And the
pretty-printed code after Line 20 shows that automation respected
the given dual hyperparameter of SVMwhile capturing the latent C,
penalty, and tol. Individual operators with partially captured hyper-
parameters are trainable: fit uses defaults for latents.

Freezing an operator turns future auto_configure or fit opera-
tions into an identity. PCA(n_components=4).freeze_trainable() >> SVM

freezes all hyperparameters of PCA (using defaults for its latents),
so auto_configure on this pipeline tunes only the hyperparameters
of SVM. Similarly, on a trained operator, freeze_trained() freezes
its learned coefficients, so any subsequent fit call will ignore its
new Dfit. Freezing part of a pipeline speeds up (Auto-)ML.

A custom schema derives a variant of an individual operator
that differs only in its schema. Custom schemas can modify ranges
or distributions for search. As an extreme case, users can attach
custom schemas to non-Lale operators to enable hyperparameter
tuning on them—the call towrap_imported_operators in Figure 1 Line 8
implicitly does that. Figure 8 shows how to explicitly customize
a schema. Line 2 imports helper functions for expressing JSON
Schema in Python. XGBoost implements a forest of boosted trees,
so to get a small forest (a Grove), Line 5 restricts the number of trees
to [2..6]. Line 6 restricts the booster to a constant, using a singleton
enum. Afterwards, Grove is an individual operator like any other.
Mathematically, we can view the ability to attach a schema to an

1 pipeline = make_pipeline(
2 MinMaxScaler | StandardScaler | Normalizer
3 | RobustScaler | QuantileTransformer,
4 AdaBoostClassifier(base_estimator=DecisionTreeClassifier))

Figure 9: Example for higher-order operator.

1 g = Grammar()
2

3 g.start = g.est | (g.clean >> g.est) | (g.tfm >> g.est) \
4 | (g.clean >> g.tfm >> g.est)
5 g.clean = (g.clean1 >> g.clean) | g.clean1
6 g.tfm = (g.tfm1 >> g.tfm) | g.tfm1
7

8 g.clean1 = SimpleImputer | MissingIndicator
9 g.tfm1 = PCA | OrdinalEncoder \
10 | OneHotEncoder(handle_unknown='ignore')
11 g.est = GaussNB | RidgeClassifier | LinearSVC | SGDClassifier
12

13 grid = g.unfold(3)
14 pipe = grid.auto_configure(
15 train_X, train_y, optimizer=Hyperopt, cv=3, max_evals=100)

Figure 10: Example grammar inspired by AlphaD3M.

individual operator as extending its curried function on the left:

indivOp : θschemas → θhyperparams → Dfit → Din → Dout

3.3 Abstractions for Expressive AutoML

A higher-order operator is an operator that takes another oper-
ator as an argument. Scikit-learn includes several higher-order
operators including RFE, AdaBoostClassifier, and BaggingClassifier.
The nested operator is a hyperparameter of the higher-order op-
erator and the nested operator can have hyperparameters of its
own. Finding the best predictive performance requires AutoML to
search both outside and inside higher-order operators. Figure 9
shows an example higher-order AdaBoostClassifier with a nested
DecisionTreeClassifier. On the outside, AutoML should search the
operator choice in Lines 2–3 and the hyperparameters of AdaBoost-
Classifier such as n_estimators. On the inside, AutoML should tune
the hyperparameters of DecisionTreeClassifier. Lale searches both
jointly, helping solve problem P3 from Section 2. The JSON schema
of the base_estimator hyperparameter of AdaBoostClassifier is:
1 { description: "Base estimator from which the ensemble is built.",
2 anyOf: [
3 {typeForOptimizer: "operator"},
4 {enum: [null]}],
5 default: null}

A pipeline grammar is a context-free grammar that describes a
possibly unbounded set of pipeline topologies. A grammar describes
a search space for the θtopology and θsteps arguments needed to
create planned pipelines and operator choices. Grammars formalize
AutoML tools for topology search such as TPOT [17], Recipe [8],
and AlphaD3M [9] that capture θtopology and θsteps automatically.
Lale provides a grammar syntax that is a natural extension of
concepts described earlier, helping solve problem P3 from Section 2.

Figure 10 shows a Lale grammar inspired by the AlphaD3M
paper [9]. It describes linear pipelines comprising zero or more
data cleaning operators, followed by zero or more transformers,

AutoML Workshop @ KDD’20, August 22–27, 2020, Page 6 Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar

1 g = Grammar()
2

3 g.start = g.process >> g.features >> g.model
4 g.process = g.process1 | ((g.process1 & g.process) >> Concat)
5 g.features = g.feature1 \
6 | (((g.feature1 | g.est) & g.features) >> Concat)
7 g.model = g.est
8

9 g.process1 = NoOp | MinMax | Standard | Norm | Robust
10 g.feature1 = NoOp | PCA | PolynomialFeatures | Nystroem
11 g.est = GaussianNB | GradientBoostingClassifier | KNN \
12 | RandomForestClassifier | ExtraTreesClassifier \
13 | QDA | PassiveAggressiveClassifier \
14 | DecisionTreeClassifier | LR | XGB | LGBM | SVC

Figure 11: Example grammar inspired by TPOT.

followed by exactly one estimator. This is implemented via recursive
non-terminals: g.clean on Line 5 is a recursive definition, and so is
g.tfm on Line 6, implementing a search space with sub-pipelines of
unbounded length. While AlphaD3M uses reinforcement learning
to search over this grammar, Figure 10 does something far less
sophisticated. Line 13 unfolds the grammar to depth 3, obtaining a
bounded planned pipeline, and Line 14 searches that using hyperopt,
with no further modifications required.

Figure 11 shows a Lale grammar inspired by TPOT [17]. It de-
scribes possibly non-linear pipelines, which use not only >> but also
the & combinator. Recall that (x & y) >> Concat applies both x and
y to the same data and then concatenates the features from both.
Besides transformers, Line 6 also uses estimators with &, turning
their predictions into features for downstream operators. This is
not supported in scikit-learn pipelines but is supported in Lale.

Progressive disclosure is a design technique that makes things
easier to use by only requiring users to learn new features when and
as they need them. The starting point for Lale is manual machine
learning, and thus, the scikit-learn code in Figure 2 is also valid
Lale code. User needs to learn zero new features if they do not
use AutoML. To use algorithm selection, users only need to learn
about the | combinator and the auto_configure function. To express
pipelines more concisely, users can learn about the >> and & combi-
nators, but those are optional syntactic sugar for make_pipeline and
make_union from scikit-learn. To use hyperparameter tuning, users
only need to learn about wrap_imported_operators. To exercise more
control over the search space, users can learn about freeze and
custom schemas. While schemas are a non-trivial concept, Lale
expresses them in JSON Schema [18], which is a widely-adopted
and well-documented standard proposal. To use higher-order opera-
tors, users need not learn new syntax, as Lale supports scikit-learn
syntax for them. Finally, to use grammars, users need to add ‘g.’ in
front of their pipeline definitions; however, all the other features,
such as the | combinator and the auto_configure function, continue
to work the same with or without grammars.

4 SEARCH SPACE GENERATION

This section describes how to map the programming model from
Section 3 to work directly with three popular AutoML tools: scikit-
learn’s GridSearchCV [5], hyperopt [4], and SMAC [12], the library
behind auto-sklearn [10].

4.1 From Grammars to Planned Pipelines

Lale offers two approaches for using a grammar with GridSearch-
CV, hyperopt, and SMAC: unfolding and sampling. Both approaches
produce a planned pipeline, which can be directly used as the
input for the compiler in Section 4.2. Unfolding and sampling are
merely intended as proof-of-concept baseline implementations. In
the future, we will also explore integrating Lale grammars directly
with AutoML tools that support them, such as AlphaD3M [9].

Unfolding first expands the grammar to a given depth, such as 3
in the example from Figure 10 Line 13. Then, it prunes all disjuncts
containing unresolved nonterminals, so that only planned Lale
operators (individual, pipeline, or choice) remain.

Sampling traverses the grammar by following each nonterminal,
picking a random step in each choice, and unfolding each pipeline.
The result is a planned pipeline without any operator choices.

4.2 From Planned Pipelines to Existing Tools

This section sketches how to map a planned pipeline (which in-
cludes a topology, steps for operator choices, and schemas for indi-
vidual operator) to a search space in the format required by Grid-
SearchCV, hyperopt, or SMAC. The running example for this sec-
tion is the pipeline PCA >> (J48 | LR) with the individual operator
schemas in Figure 7.

Lale’s search space generator has two phases: normalizer and
backend. The normalizer translates the schemas of individual oper-
ators separately. The backend combines the schemas for the entire
pipeline and finally generates a tool-specific search space.

The normalizer processes the schema for an individual operator
in a bottom-up pass. The desired end result is a search space in
Lale’s normal form, which is ∨(dict{cat∗, cont∗}∗). At each level,
the normalizer simplifies children and hoists disjunctions up.

PCA:dict{N : (0..1)} ∨ dict{N : [mle]}
J48 :dict{R: [false],C: (0..0.5)} ∨ dict{R: [true, false],C: [0.25]}
LR :dict{S : [linear], P : [l1, l2]} ∨ dict{S : [linear, sag, lbfgs], P : [l2]}

The backend starts by first combining the search spaces for all
operators in the pipeline. Each pipeline becomes a ‘dict’ over its
steps; each operator choice becomes an ‘∨’ over its steps with added
discriminantsD to track what was chosen; and each individual oper-
ator simply comes from the normalizer. This yields an intermediate
representation (IR) whose nesting structure reflects the operator
nesting of the original pipeline. For our running example, this is:

dict

0: dict{N : (0..1)} ∨ dict{N : [mle]}

1:
©«
(
dict{D: [J48],R: [false],C: (0..0.5)} ∨
dict{D: [J48],R: [true, false],C: [0.25]}

)
∨(

dict{D: [LR], S : [linear], P : [l1, l2]} ∨
dict{D: [LR], S : [linear, sag, lbfgs], P : [l2]}

) ª®®®¬

The remainder of the backend is specific to the targeted AutoML
tools, which the following text describes one by one.

The hyperopt backend of Lale is the simplest because hyperopt
supports nested search space specifications that are conceptually
similar to the Lale IR. For instance, an exclusive disjunction ‘∨’
from the IR can be translated into a hyperopt hp.choice, an example
for which occurs in Figure 4 Line 5. Similarly, a ‘dict’ from the IR can
be translated into a Python dictionary that hyperopt understands.

Lale: Consistent Automated Machine Learning AutoML Workshop @ KDD’20, August 22–27, 2020, Page 7

For working with higher-order operators, Lale adds additional
markers that enable it to reconstruct nested operators later.

The SMAC backend has to flatten Lale’s nested IR into a grid of
disjuncts with discriminants D. To do this, it internally uses a name
mangling encoding that extends the __mangling of scikit-learn, an
example for which occurs in Figure 3 Line 7. Each element of the
grid needs to be a simple ‘dict’ with no further nesting. For our
running example, the result in mathematical notation is:

dict{N : (0..1),D: [J48],R: [false], C: (0..0.5)}
∨ dict{N : (0..1),D: [J48],R: [true, false], C: [0.25] }
∨ dict{N : [mle], D: [J48],R: [false], C: (0..0.5)}
∨ dict{N : [mle], D: [J48],R: [true, false], C: [0.25] }
∨ dict{N : (0..1),D: [LR], S : [linear], P : [l1, l2] }
∨ dict{N : (0..1),D: [LR], S : [linear, sag, lbfgs], P : [l2] }
∨ dict{N : [mle], D: [LR], S : [linear], P : [l1, l2] }
∨ dict{N : [mle], D: [LR], S : [linear, sag, lbfgs], P : [l2] }

Next, the SMAC backend adds conditionals that tell the Bayesian
optimizer which variables are relevant for which disjunct, and
finally outputs the search space in SMAC’s PCS format.

The GridSearchCV backend starts from the same flattened grid
representation that is also used by the SMAC backend. Then, it
discretizes each continuous hyperparameter into a categorical by
first including the default and then sampling a user-configurable
number of additional values from its range and prior distribution
(such as uniform in Figure 7 Line 7). The generated search space in
mathematical notation is:

dict{N : [0.50, 0.01],D: [J48],R: [false],C: [0.25, 0.01]}
∨ dict{N : [0.50, 0.01],D: [J48],R: [true, false],C: [0.25]}
∨ dict{N : [mle],D: [J48],R: [false],C: [0.25, 0.01]}
∨ dict{N : [mle],D: [J48],R: [true, false],C: [0.25]}
∨ dict{N : [0.50, 0.01],D: [LR], S : [linear], P : [l1, l2]}
∨ dict{N : [0.50, 0.01],D: [LR], S : [linear, sag, lbfgs], P : [l2]}
∨ dict{N : [mle],D: [LR], S : [linear], P : [l1, l2]}
∨ dict{N : [mle],D: [LR], S : [linear, sag, lbfgs], P : [l2]}

5 IMPLEMENTATION

This section highlights some of the trickier parts of the Lale imple-
mentation, which is entirely in Python.

To implement lifecycle states, Lale uses Python subclassing. For
example, the Trainable is a subclass of Planned, adding a fitmethod.
Subclassing lets users treat an operator as also still belonging to an
earlier state, e.g., in a mixed-state pipeline. The Lale implementa-
tion adds Python 3 type hints so users can get additional help from
tools such as MyPy, PyCharm, or VSCode.

To implement the combinators >>, &, and |, Lale uses Python’s
overloaded __rshift__, __and__, and __or__ methods. Python only
supports overriding these as instance methods. Therefore, unlike in
scikit-learn, Lale planned operators are object instances, not classes.
This required emulating the scikit-learn __init__with __call__.

The implementation carefully avoids in-place mutation of op-
erators by methods such as auto_configure, fit, customize_schema, or
unfold. This prevents unintended side effects and keeps the imple-
mentation consistent with the mathematical function abstractions
from Section 3.1. Unfortunately, in scikit-learn, fit does in-place
mutation, so for compatibility, Lale supports that but with a depre-
cation warning.

1 prep = (NoOp | MinMaxScaler | StandardScaler | Normalizer
2 | RobustScaler)
3 feat = (NoOp | PCA | PolynomialFeatures | Nystroem)
4 clf = (GaussianNB | GradientBoostingClassifier | SVC
5 | KNeighborsClassifier | RandomForestClassifier
6 | ExtraTreesClassifier | QuadraticDiscriminantAnalysis
7 | PassiveAggressiveClassifier | DecisionTreeClassifier
8 | LogisticRegression | XGBClassifier | LGBMClassifier)
9 lale_openml_pipeline = prep >> feat >> clf

Figure 12: Pipeline for OpenML experiment.

The implementation lets users import operators directly from
their source packages. For example, see Figure 1 Lines 2–5. However,
these operators need to then support the combinators and have
attached schemas. Lale supports that via wrap_imported_operators(),
which reflects over the symbol table and replaces any known non-
Lale operators by an object that points to the non-Lale operator
and augments it with Lale operator functionality.

The implementation supports interoperability with PyTorch,Weka,
and R operators. This is demonstrated by Lale’s operators from
PyTorch (BERT, ResNet50), Weka (J48), and R (ARulesCBA). Sup-
porting them requires, first, a class that is scikit-learn compatible.
While this is easy for some cases (e.g., XGBoost), it is sometimes
non-trivial. For instance, for Weka, Lale uses javabridge. Second,
each operator needs a JSON schema for its hyperparameters. This
is eased by Lale’s customize_schemaAPI.

The implementation of grammars had to overcome the core diffi-
culty that recursive nonterminals require being able to use a name
before it is defined. Python does not allow that for local variables.
Therefore, Lale grammars implement it with object attributes in-
stead. More specifically, Lale grammars use overloaded __getattr__

and __setattr__methods.

6 RESULTS

This section evaluates Lale on OpenML classification tasks and
on different data modalities. It also experimentally demonstrates
the importance of side constraints for the optimization process. For
each experiment, we specified a Lale search space and then used
auto_configure to run hyperopt on it. The value proposition of Lale
is to leverage existing AutoML tools effectively and consistently; in
general, we do not expect Lale to outperform them.

6.1 Benchmarks: OpenML Classification

To demonstrate the use of Lale, we designed four experiments that
specify different search spaces for OpenML classification tasks.
lale-pipe: The three-step plannedlale_openml_pipeline in Figure 12.

lale-ad3m: The AlphaD3M-inspired grammar of Figure 10 un-
folded with a maximal depth of 3.

lale-tpot: The TPOT-inspired grammar of Figure 11 unfolded with
a maximal depth of 3.

lale-adb: The higher-order operator pipeline of Figure 9.
For comparison, we used auto-sklearn [10] — a popular scikit-

learn based AutoML tool that has won two OpenML challenges —
with its default setting as a baseline. We chose 15 OpenML datasets
for which we could get meaningful results (more than 30 trials)

AutoML Workshop @ KDD’20, August 22–27, 2020, Page 8 Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar

Table 1: Accuracy for 15 OpenML classification tasks

Absolute accuracy (mean and standard deviation over 5 runs) 100 ∗ (accuracy/autoskl − 1)
Dataset autoskl lale-pipe lale-tpot lale-ad3m lale-adb askl-adb lale-pipe lale-tpot lale-ad3m lale-adb

australian 85.09 (0.44) 85.44 (0.72) 85.88 (0.57) 86.84 (0.00) 86.05 (1.62) 84.74 (3.11) 0.41 0.93 2.06 1.13
blood 77.89 (1.39) 76.28 (5.22) 77.49 (2.46) 74.74 (0.74) 77.09 (0.74) 74.74 (0.84) -2.08 -0.52 -4.05 -1.04
breast-cancer 73.05 (0.58) 71.16 (1.20) 71.37 (1.15) 69.47 (3.33) 70.95 (2.05) 72.42 (0.47) -2.59 -2.31 -4.90 -2.88
car 99.37 (0.10) 98.25 (1.16) 99.12 (0.12) 92.71 (0.63) 98.28 (0.26) 98.25 (0.25) -1.13 -0.25 -6.70 -1.09
credit-g 76.61 (1.20) 74.85 (0.52) 74.12 (0.55) 74.79 (0.40) 76.06 (1.27) 76.24 (1.02) -2.29 -3.24 -2.37 -0.71
diabetes 77.01 (1.32) 77.48 (1.51) 76.38 (1.11) 77.87 (0.18) 75.98 (0.48) 75.04 (1.03) 0.61 -0.82 1.12 -1.33
hill-valley 99.45 (0.97) 99.25 (1.15) 100.0 (0.00) 96.80 (0.21) 100.00 (0.00) 99.10 (0.52) -0.20 0.55 -2.66 0.55
jungle-chess 88.06 (0.24) 90.29 (0.00) 88.90 (2.05) 74.14 (2.02) 89.41 (2.29) 86.87 (0.20) 2.54 0.96 -15.80 1.53
kc1 83.79 (0.31) 83.48 (0.75) 83.48 (0.54) 83.62 (0.23) 83.30 (0.36) 84.02 (0.31) -0.38 -0.38 -0.21 -0.58
kr-vs-kp 99.70 (0.04) 99.34 (0.07) 99.43 (0.00) 96.83 (0.14) 99.51 (0.10) 99.47 (0.16) -0.36 -0.27 -2.87 -0.19
mfeat-factors 98.70 (0.08) 97.58 (0.28) 97.18 (0.50) 97.55 (0.07) 97.52 (0.40) 97.94 (0.08) -1.14 -1.54 -1.17 -1.20
phoneme 90.31 (0.39) 89.06 (0.67) 89.56 (0.36) 76.57 (0.00) 90.11 (0.45) 91.36 (0.21) -1.39 -0.83 -15.20 -0.22
shuttle 87.27 (11.6) 99.94 (0.01) 99.93 (0.04) 99.89 (0.00) 99.98 (0.00) 99.97 (0.01) 14.51 14.50 14.45 14.56
spectf 87.93 (0.86) 87.24 (1.12) 88.45 (2.25) 83.62 (6.92) 88.45 (2.63) 89.66 (2.92) -0.78 0.59 -4.90 0.59
sylvine 95.42 (0.21) 95.00 (0.61) 94.41 (0.75) 91.31 (0.12) 95.15 (0.20) 95.07 (0.14) -0.45 -1.07 -4.31 -0.29

using the default settings of Auto-sklearn. The selected datasets
comprise 5 simple classification tasks (test accuracy > 90% in all
our experiments) and 10 harder tasks (test accuracy < 90%). For
each experiment, we used a 66% − 33% validation-test split, and a
5-fold cross validation on the validation split during optimization.
Experiments were run on a 32 cores (2.0GHz) virtual machine with
128GB memory, and for each task, the total optimization time was
set to 1 hour with a timeout of 6 minutes per trial.

Table 1 presents the results of our experiments. For each ex-
periment, we report the test accuracy of the best pipeline found
averaged over 5 runs. Note that for the shuttle dataset, 3 out of 5
runs of auto-sklearn resulted in a MyDummyClassifier being returned
as the result. Since we were trying to evaluate the default settings,
we did not attempt debugging it, but according to the tool’s issue
log, other users have encountered it before. The column askl-adb
reports the accuracy of auto-sklearn when the set of classifiers is
limited to AdaBoost with only data pre-processing. These results
are presented for comparison with the lale-adb experiments, as
the data preprocessing operators in Figure 9 were chosen to match
those of auto-sklearn as much as possible. Also note that the default
setting for auto-sklearn uses meta-learning.

The results show that carefully crafted search spaces (e.g., TPOT-
inspired grammar, or pipelines with higher-order operators) and off-
the-shelf optimizers such as hyperopt can achieve accuracies that
are competitive with state-of-the-art tools. These experiments thus
validate Lale’s controlled approach to AutoML as an alternative to
black-box solutions. In addition, these experiments illustrate that
Lale is modular enough to easily express and compare multiple
search spaces for a given task.

6.2 Case Studies: Other Modalities

While all the examples so far focused on tasks for tabular datasets,
the core contribution of Lale is not limited to those. This section
demonstrates Lale’s versatility on three datasets from different
modalities. Table 2 summarizes the results.
Text. We used the Drug Review dataset for predicting a rating
given by a patient to a drug. The Drug Review dataset has a text col-
umn calledreview, to which the pipeline applies eitherTfidfVectorizer

Table 2: Performance of the best pipeline using Lale with

hyperopt. The mean and stdev are over 3 runs.

modality dataset mean stdev metric

Text Drug Review 1.9237 0.06 test RMSE
Image CIFAR-10 93.53% 0.11 test accuracy
Time-series Epilepsy 73.15% 8.2 test accuracy

from scikit-learn or a pretrained BERT embeddings, which is a text
embedding based on neural networks. The dataset also has numeric
columns, which are concatenated with the result of the embedding.

1 planned_pipeline = (
2 Project(columns=['review']) >> (BERT | TfidfVectorizer)
3 & Project(columns={'type': 'number'})
4) >> Cat >> (LinearRegression | XGBRegressor)

Image. We used the CIFAR-10 computer vision dataset. We picked
the ResNet50 deep-learning model, since it has been shown to do
well on CIFAR-10. Our experiments kept the architecture of ResNet50
fixed and tuned learning-procedure hyperparameters.

Time-series. We used the Epilepsy dataset, a subset of the TUH
Seizure Corpus, for classifying seizures by onset location (general-
ized or focal). We used a three-step pipeline:

1 planned = Window \
2 >> (KNeighborsClassifier| XGBClassifier| LogisticRegression) \
3 >> Voting

We implemented a popular pre-processing method [19] in a Window
operator with three hyperparametersW , O , and T . Note that this
transformer leads to multiple samples per seizure. Hence, during
evaluation, each seizure is classified by taking a vote of the predic-
tions made by each sample generated from it.

6.3 Effect of Side Constraints on Convergence

Lale’s search space compiler takes rich hyperparameter schemas
including side constraints and translates them into semantically
equivalent search spaces for different AutoML tools. This raises the
question of how important those side constraints are in practice.

Lale: Consistent Automated Machine Learning AutoML Workshop @ KDD’20, August 22–27, 2020, Page 9

Figure 13: Convergence with planned pipeline LR | KNN.

Figure 14: Convergence with planned pipeline J48 | LR | KNN.

To explore this, we did an ablation study where we generated not
just the constrained search spaces that are default with Lale but
also unconstrained search spaces that drop side constraints. With
hyperopt on the unconstrained search space, some iterations are
unsuccessful due to exceptions, for which we reported np.float.max

loss. Figure 13 plots the convergence for the Car dataset on the
planned pipeline LR | KNN. Both of these operators have a few side
constraints. Whereas the unconstrained search space causes some
invalid points early in the search, the two curves more-or-less
coincide after about two dozen iterations. The story looks very
different in Figure 14 when adding a third operator J48 | LR | KNN.
In the unconstrained case, J48 has many more invalid runs, causing
hyperopt to see so many np.float.max loss values from J48 that it
gives up on it. In the constrained case, on the other hand, J48 has no
invalid runs, and hyperopt eventually realizes that it can configure
J48 to obtain substantially better performance.

6.4 Dataset Details

In order to be specific about the exact datasets for reproducibility,
Table 3 report the URLs for accessing those.

7 RELATEDWORK

There are various search tools, designed around scikit-learn [5],
and each usually focused on a particular novel optimization algo-
rithm. Auto-sklearn [10] uses the search space specification and
optimization algorithm of SMAC [12]. Hyperopt-sklearn [15] uses
its own search space specification scheme and a novel optimizer
based on Tree-structured Parzen Estimators (TPE) [3]. Scikit-learn
also comes with its own GridSearchCV and RandomizedSearchCV
classes. Auto-Weka [20] is a predecessor of auto-sklearn that also
uses SMAC but operates on operators from Weka [11] instead of

Table 3: Dataset details for reproducibility.

Dataset URL

australian https://www.openml.org/d/40981
blood https://www.openml.org/d/1464
breast-cancer https://www.openml.org/d/13
car https://www.openml.org/d/40975
credit-g https://www.openml.org/d/31
diabetes https://www.openml.org/d/37
hill-valley https://www.openml.org/d/1479
jungle-chess https://www.openml.org/d/41027
kc1 https://www.openml.org/d/1067
kr-vs-kp https://www.openml.org/d/3
mfeat-factors https://www.openml.org/d/12
phoneme https://www.openml.org/d/1489
shuttle https://www.openml.org/d/40685
spectf https://www.openml.org/d/337
sylvine https://www.openml.org/d/41146

CIFAR-10 https://en.wikipedia.org/wiki/CIFAR-10
Drug Review https://archive.ics.uci.edu/ml/datasets/Drug+Revi+

Dataset+%28Drugs.com%29
Epilepsy https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC6246677

scikit-learn. TPOT [17] is designed around scikit-learn and uses
genetic programming to search for pipeline topologies and operator
choices. This usually leads to the generation of many misconfig-
ured pipelines, wasting execution time. RECIPE [8] prunes away
the misconfigurations to save execution time by validating gener-
ated pipelines with a grammar for linear pipelines. AlphaD3M [9]
makes use of a grammar in a generative manner (instead of just
for validation) with a deep reinforcement learning based algorithm.
Katz et al. [13] similarly use a grammar for Lale pipelines with AI
planning tools. In contrast to these tools, the contribution of this
paper is not a novel optimization algorithm but rather a more con-
sistent programming model with search space generation targeting
existing tools.

8 CONCLUSION

This paper describes Lale, a library for semi-automated data sci-
ence. Lale contributes a syntax that is consistent with scikit-learn,
but extends it to support a broad spectrum of automation including
algorithm selection, hyperparameter tuning, and topology search.
Lale works by automatically generating search spaces for estab-
lished AutoML tools, extending their capabilities to grammar-based
search and to search inside higher-order operators. The experi-
ments show that search spaces crafted using Lale achieve results
that are competitive with state-of-the-art tools while offering more
versatility.

https://www.openml.org/d/40981
https://www.openml.org/d/1464
https://www.openml.org/d/13
https://www.openml.org/d/40975
https://www.openml.org/d/31
https://www.openml.org/d/37
https://www.openml.org/d/1479
https://www.openml.org/d/41027
https://www.openml.org/d/1067
https://www.openml.org/d/3
https://www.openml.org/d/12
https://www.openml.org/d/1489
https://www.openml.org/d/40685
https://www.openml.org/d/337
https://www.openml.org/d/41146
https://en.wikipedia.org/wiki/CIFAR-10
https://archive.ics.uci.edu/ml/datasets/Drug+Revi+Dataset+%28Drugs.com%29
https://archive.ics.uci.edu/ml/datasets/Drug+Revi+Dataset+%28Drugs.com%29
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6246677
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6246677

AutoML Workshop @ KDD’20, August 22–27, 2020, Page 10 Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shinnar

REFERENCES

[1] Guillaume Baudart, Martin Hirzel, Kiran Kate, Louis Mandel, and Avraham Shin-
nar. 2019. Machine Learning in Python with No Strings Attached. In Work-
shop on Machine Learning and Programming Languages (MAPL). 1–9. https:
//doi.org/10.1145/3315508.3329972

[2] Guillaume Baudart, Peter Kirchner, Martin Hirzel, and Kiran Kate. 2020. Min-
ing Documentation to Extract Hyperparameter Schemas. In ICML Workshop on
Automated Machine Learning (AutoML@ICML). https://arxiv.org/abs/2006.16984

[3] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algo-
rithms for Hyper-Parameter Optimization. In Conference on Neural Information
Processing Systems (NIPS). http://papers.nips.cc/paper/4443-algorithms-for-
hyper-parameter-optimizat

[4] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D. Cox.
2015. Hyperopt: a Python Library for Model Selection and Hyperparameter
Optimization. Computational Science & Discovery 8, 1 (2015). http://dx.doi.org/
10.1088/1749-4699/8/1/014008

[5] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and
Gaël Varoquaux. 2013. API Design for Machine Learning Software: Experiences
from the scikit-learn Project. https://arxiv.org/abs/1309.0238

[6] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Conference on Knowledge Discovery and Data Mining (KDD). 785–794.
http://doi.acm.org/10.1145/2939672.2939785

[7] Noam Chomsky. 1956. Three models for the description of language. IRE Trans-
actions on Information Theory 2, 3 (1956), 113–124.

[8] Alex G. C. de Sá, Walter José G. S. Pinto, Luiz Otavio V. B. Oliveira, and Gisele L.
Pappa. 2017. RECIPE: A Grammar-Based Framework for Automatically Evolving
Classification Pipelines. In European Conference on Genetic Programming (EuroGP).
246–261. https://link.springer.com/chapter/10.1007/978-3-319-55696-3_16

[9] Iddo Drori, Yamuna Krishnamurthy, Raoni Lourenco, Remi Rampin, Kyunghyun
Cho, Claudio Silva, and Juliana Freire. 2019. Automatic Machine Learning by
Pipeline Synthesis using Model-Based Reinforcement Learning and a Grammar.
In Workshop on Automatic Machine Learning (AutoML). https://www.automl.
org/wp-content/uploads/2019/06/automlws2019_Paper34.pdf

[10] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning.
In Conference on Neural Information Processing Systems (NIPS). 2962–2970. http:
//papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning

[11] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. 2009. The WEKA Data Mining Software: An Update. SIGKDD

Explorations Newsletter 11, 1 (Nov. 2009), 10–18. http://doi.acm.org/10.1145/
1656274.1656278

[12] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential
Model-Based Optimization for General Algorithm Configuration. In Interna-
tional Conference on Learning and Intelligent Optimization (LION). 507–523.
https://doi.org/10.1007/978-3-642-25566-3_40

[13] Michael Katz, Parikshit Ram, Shirin Sohrabi, and Octavian Udrea. 2020. Exploring
Context-Free Languages via Planning: The Case for Automating Machine Learn-
ing. In International Conference on Automated Planning and Scheduling (ICAPS),
Vol. 30. 403–411. https://www.aaai.org/ojs/index.php/ICAPS/article/view/6686

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A highly efficient gradient boosting
decision tree. In Conference on Neural Information Processing Systems (NIPS). 3146–
3154. http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-
boosting-decision-tree.pdf

[15] Brent Komer, James Bergstra, and Chris Eliasmith. 2014. Hyperopt-Sklearn:
Automatic Hyperparameter Configuration for Scikit-Learn. In Python in Science
Conference (SciPy). 32–37. http://conference.scipy.org/proceedings/scipy2014/
komer.html

[16] Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bram-
ble, Horst Samulowitz, Dakuo Wang, Andrew Conn, and Alexander G Gray. 2020.
An ADMM Based Framework for AutoML Pipeline Configuration. In Conference
on Artificial Intelligence (AAAI). 4892–4899. https://aaai.org/ojs/index.php/AAAI/
article/view/5926

[17] Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Laven-
der, La Creis Kidd, and Jason H. Moore. 2016. Automating Biomedical Data
Science Through Tree-Based Pipeline Optimization. In European Conference
on the Applications of Evolutionary Computation (EvoApplications). 123–137.
https://doi.org/10.1007/978-3-319-31204-0_9

[18] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj
Vrgoč. 2016. Foundations of JSON Schema. In International Conference on World
Wide Web (WWW). 263–273. https://doi.org/10.1145/2872427.2883029

[19] Kaspar Schindler, Howan Leung, Christian E. Elger, and Klaus Lehnertz.
2006. Assessing seizure dynamics by analysing the correlation struc-
ture of multichannel intracranial EEG. Brain 130, 1 (11 2006), 65–77.
arXiv:http://oup.prod.sis.lan/brain/article-pdf/130/1/65/992272/awl304.pdf https:
//doi.org/10.1093/brain/awl304

[20] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Clas-
sification Algorithms. In Conference on Knowledge Discovery and Data Mining
(KDD). 847–855. https://doi.org/10.1145/2487575.2487629

https://doi.org/10.1145/3315508.3329972
https://doi.org/10.1145/3315508.3329972
https://arxiv.org/abs/2006.16984
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimizat
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimizat
http://dx.doi.org/10.1088/1749-4699/8/1/014008
http://dx.doi.org/10.1088/1749-4699/8/1/014008
https://arxiv.org/abs/1309.0238
http://doi.acm.org/10.1145/2939672.2939785
https://link.springer.com/chapter/10.1007/978-3-319-55696-3_16
https://www.automl.org/wp-content/uploads/2019/06/automlws2019_Paper34.pdf
https://www.automl.org/wp-content/uploads/2019/06/automlws2019_Paper34.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://doi.acm.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
https://doi.org/10.1007/978-3-642-25566-3_40
https://www.aaai.org/ojs/index.php/ICAPS/article/view/6686
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://conference.scipy.org/proceedings/scipy2014/komer.html
http://conference.scipy.org/proceedings/scipy2014/komer.html
https://aaai.org/ojs/index.php/AAAI/article/view/5926
https://aaai.org/ojs/index.php/AAAI/article/view/5926
https://doi.org/10.1007/978-3-319-31204-0_9
https://doi.org/10.1145/2872427.2883029
http://arxiv.org/abs/http://oup.prod.sis.lan/brain/article-pdf/130/1/65/992272/awl304.pdf
https://doi.org/10.1093/brain/awl304
https://doi.org/10.1093/brain/awl304
https://doi.org/10.1145/2487575.2487629

	Abstract
	1 Introduction
	2 Problem Statement
	3 Programming Abstractions
	3.1 Abstractions for Declarative AutoML
	3.2 Abstractions for Controlled AutoML
	3.3 Abstractions for Expressive AutoML

	4 Search Space Generation
	4.1 From Grammars to Planned Pipelines
	4.2 From Planned Pipelines to Existing Tools

	5 Implementation
	6 Results
	6.1 Benchmarks: OpenML Classification
	6.2 Case Studies: Other Modalities
	6.3 Effect of Side Constraints on Convergence
	6.4 Dataset Details

	7 Related Work
	8 Conclusion
	References

