Mining Documentation to Extract Hyperparameter Schemas

Guillaume Baudart, Peter D. Kirchner, Martin Hirzel, Kiran Kate IBM Research

Mining Documentation...

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

Logistic Regression (aka logit, MaxEnt) classifier.

Parameters:	penalty : {'l1', 'l2', 'elasticnet', 'none'}, default='l2'
	Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only I2
	penalties. 'elasticnet' is only supported by the 'saga' solver. If 'none' (not supported by the liblinear solver),
	no regularization is applied.
	New in version 0.19: I1 penalty with SAGA solver (allowing 'multinomial' + L1)
	class_weight : dict or 'balanced', default=None
	Weights associated with classes in the form {class label: weight}. If not given, all classes are

Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one.

Challenges

- Variability: multiple formats, typos, …
- Constraints are expressed in natural language

Mining Documentation...

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

Logistic Regression (aka logit, MaxEnt) classifier.

Challenges

- Variability: multiple formats, typos, ...
- Constraints are expressed in natural language

Mining Documentation...

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

Logistic Regression (aka logit, MaxEnt) classifier.

Challenges

- Variability: multiple formats, typos, …
- Constraints are expressed in natural language

... to Extract Hyperparameter Schemas

Machine Readable JSON Schemas

Can be compiled to search spaces for multiple AutoML tools

Expressive enough for cross-parameter constraints

```
{ '$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Hyperparameter schema.',
'allOf': [
  { 'type': 'object',
    'additionalProperties': False,
    'required': ['penalty', 'dual', 'tol', ...],
    'relevantToOptimizer': ['penalty', 'dual', 'tol', ...],
    'properties': {
      'penalty': {
        'description': 'Norm used in the penalization.',
        'enum': ['l1', 'l2'],
        'default': 'l2'},
      'class_weight': {
        'description': 'Weights associated with classes',
        'anyOf': [
          { 'description': 'Adjust weights by inverse frequency.',
            'enum': ['balanced']},
          { 'description': 'Dictionary mapping class labels to weights.',
            'type': 'object',
            'propertyNames': {'pattern': '^.+$', 'type': 'number'},
            'forOptimizer': False}],
        'default': None}
```

... to Extract Hyperparameter Schemas

Machine Readable JSON Schemas

- Can be compiled to search spaces for multiple AutoML tools
- Expressive enough for cross-parameter constraints

```
{ '$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Hyperparameter schema.',
'allOf': [
  { 'type': 'object',
                      Constraint example
    'additionalProper
    'required': ['pen
                       { 'description':
    'relevantToOptimi
                           'The newton-cg, sag, and lbfgs solvers support only l2 penalties.',
    'properties': {
                         'anyOf': [
      'penalty': {
                           { 'type': 'object',
        'description'
                             'properties': {
        'enum': ['l1'
                              'solver': {'not': {'enum': ['newton-cg', 'sag', 'lbfgs']}}},
        'default': 'l
                           { 'type': 'object',
      'class_weight':
                             'properties': {'penalty': {'enum': ['l2']}}]},
        'description'
        'anyOf': [
          { 'description': 'Adjust weights by inverse frequency.',
            'enum': ['balanced']},
          { 'description': 'Dictionary mapping class labels to weights.',
            'type': 'object',
            'propertyNames': {'pattern': '^.+$', 'type': 'number'},
            'forOptimizer': False}],
         default': None}
```

Our Approach

Two sources of truth: documentation & source code

- Controlled natural language parser: Mine high-quality documentation
- Dynamic analysis: Analyze the code to refine the schema

Evaluation

Complete Dataset: 115 SKLearn, 2 XGBoost, 2 LightGBM

- Types: 94% of 1,758 parameters
- Ranges: 50% of 790 parameters (numeric types, enums)
- Constraints: flagged 118, compiled 43.

Curated Dataset: 38 SKLearn, 2 XGBoost, 2 LightGBM

- Types: 81% of 452 parameters
- Ranges: 81% of 103 parameters (numeric types, enums)
- Constraints: flagged 50, compiled 20 of 65 constraints

AutoML Pipeline: preprocess \rightarrow features \rightarrow classifier

- Use our schemas to tune hyperparameters for 15 OpenML tasks
- Accuracies are comparable to Auto-SKLearn

https://github.com/IBM/lale