
Mining Documentation to Extract 
Hyperparameter Schemas

Guillaume Baudart, Peter D. Kirchner, Martin Hirzel, Kiran Kate 
IBM Research



Mining Documentation...

Challenges

Variability: multiple formats, typos, ... 
Constraints are expressed in natural language



Mining Documentation...

{'l1', 'l2', 'elasticnet', 'none'}

or 'balanced'

Challenges

Variability: multiple formats, typos, ... 
Constraints are expressed in natural language



Mining Documentation...

{'l1', 'l2', 'elasticnet', 'none'}

or 'balanced'

only supported by the 'saga' solver

Challenges

Variability: multiple formats, typos, ... 
Constraints are expressed in natural language



... to Extract Hyperparameter Schemas
Machine Readable JSON Schemas


Can be compiled to search spaces for multiple AutoML tools 
Expressive enough for cross-parameter constraints



... to Extract Hyperparameter Schemas

Constraint example

Machine Readable JSON Schemas

Can be compiled to search spaces for multiple AutoML tools 
Expressive enough for cross-parameter constraints



Our Approach

7th ICML Workshop on Automated Machine Learning (2020)

Mining Documentation to Extract Hyperparameter Schemas

Guillaume Baudart and Peter D. Kirchner and Martin Hirzel and Kiran Kate
IBM Research, New York, USA

Abstract
AI automation tools need machine-readable hyperparameter schemas to define their search

spaces. At the same time, AI libraries often come with good human-readable documenta-

tion. While such documentation contains most of the necessary information, it is unfor-

tunately not ready to consume by tools. This paper describes how to automatically mine

Python docstrings in AI libraries to extract JSON Schemas for their hyperparameters. We

evaluate our approach on 119 transformers and estimators from three different libraries and

find that it is effective at extracting machine-readable schemas. Our vision is to reduce

the burden to manually create and maintain such schemas for AI automation tools and

broaden the reach of automation to larger libraries and richer schemas.

1. Introduction

Machine-learning practitioners use libraries of operators : reusable implementations of es-
timators (such as logistic regression, LR) and transformers (such as principal component
analysis, PCA). Training an operator fits its parameters (learnable coefficients such as LR
weights or PCA eigenvectors) to a dataset. Besides parameters, most operators also have hy-

perparameters : arguments that must be configured before training, such as the choice of LR
solver or the number of PCA components. Python libraries for machine learning (ML) such
as scikit-learn (Buitinck et al., 2013) tend to have good human readable documentation for
hyperparameters. Unfortunately, this documentation is usually not easily machine readable.
ML practitioners can configure hyperparameters either by hand or by using an HPO (au-
tomated hyperparameter optimization) tool such as hyperopt-sklearn (Komer et al., 2014)
or auto-sklearn (Feurer et al., 2015), or the grid search or randomized search from scikit-
learn. A hyperparameter schema specifies which hyperparameters are categorical and which
continuous, which values or ranges are valid, and conditional hyperparameter constraints.

DocString

Implementation

Python file

CNL parser Raw schema

Refined schema

Dynamic analysis

Observations

Overrides

Schema refiner

Figure 1: Overview of our mining approach.

Python has recently emerged as
the dominant ML language and many
ML libraries adopt scikit-learn style
conventions for interoperability (in-
cluding PyTorch1, pandas2, Spark3,
statsmodels4, and TensorFlow5). This
paper proposes and demonstrates an
approach for mining hyperparameter
schemas from the Python file imple-
menting an ML operator. The approach, shown in Figure 1, mines the docstring and refines
1

https://github.com/skorch-dev/skorch
2

https://github.com/scikit-learn-contrib/sklearn-pandas
3

https://github.com/databricks/spark-sklearn
4

https://github.com/statsmodels/statsmodels
5

https://www.tensorflow.org/api_docs/python/tf/keras/wrappers/scikit_learn

©2020 G. Baudart, P. Kirchner, M. Hirzel, K. Kate.

Two sources of truth: documentation & source code

Controlled natural language parser: Mine high-quality documentation 
Dynamic analysis: Analyze the code to refine the schema



Complete Dataset: 115 SKLearn, 2 XGBoost, 2 LightGBM

Types: 94% of 1,758 parameters 
Ranges: 50% of 790 parameters (numeric types, enums) 
Constraints: flagged 118, compiled 43. 

Curated Dataset: 38 SKLearn, 2 XGBoost, 2 LightGBM 

Types: 81% of 452 parameters 
Ranges: 81% of 103 parameters (numeric types, enums) 
Constraints: flagged 50, compiled 20 of 65 constraints 

AutoML Pipeline: preprocess ->- features ->- classifier 
Use our schemas to tune hyperparameters for 15 OpenML tasks 
Accuracies are comparable to Auto-SKLearn

Evaluation



https://github.com/IBM/lale


